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ABSTRACT

Background/Objective. Diseases of agricultural crops affect the yields and quality 
of products. Synthetic chemical compounds are generally used to control them; 
these cause harmful impacts to the environment, as well as to human health. In this 
sense, beneficial microorganisms can be used in agriculture as biocontrol agents, 
and contribute to obtaining food in sufficient and safe quantities. The fungus Irpex 
lacteus has been reported as a potential biocontrol agent. The objective of this 
research work was to evaluate the in vitro mycoparasitic capacity of the endophytic 
fungus I. lacteus P7B against 22 fungi and one oomycete associated with plant 
diseases.

Materials and Methods. The P7B isolate, previously detected as a mycoparasite, 
was used and molecularly identified by amplification and sequencing of the 
internal transcribed spacer (ITS) region of ribosomal DNA, using primers ITS1/
ITS4.The confrontations of the mycoparasite (P7B) against the phytopathogenic 
microorganisms were carried out in PDA culture medium. Three replicates were 
used for each microorganism, in addition to the controls, which consisted of placing 
the microorganisms individually.

Results. Molecular analyses determined that isolate P7B corresponded to Irpex 
lacteus (GenBank: PP922180). The results of the in vitro assays indicated that I. 
lacteus P7B inhibited all the phytopathogenic agents with which it was confronted, 
100% inhibition by I. lacteus occurred approximately in 14 days, except for Rhizopus 
spp., this was at 23 days after the confrontations.
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Conclusion. The present study demonstrates that the fungus I. lacteus presented 
100% in vitro mycoparasitic capacity against the various fungi and an oomycete 
evaluated, so future work could focus on evaluating its mycoparasitic activity under 
field conditions.

Key words: biocontrol agent, phytopathogens, mycoparasite.

Introduction

Diseases caused by fungi and oomycetes currently cause important economic 
losses in crops (Meng et al., 2009). On the other hand, the world population increase 
demands greater amounts and quality of agricultural products, and consequently, 
a greater use of pesticides to fight diseases (Lahlali et al., 2022). However, in 
recent years, consumers have become more aware of the side effects of the use 
of pesticides such as chemical fungicides on human health and the environment 
(Hou and Wu, 2010). One of the alternatives to reduce dependence on pesticides 
is biological control (Compant et al., 2005; Barratt et al., 2018), which is defined, 
in general terms, as any living microorganism (including viruses) used to fight 
a pathogen or pest by parasitism, antibiosis, competition for space or resources 
(Eilenberg et al., 2001; Stenberg et al., 2021). In this regard, several species of 
basidiomycete mycoparasites have been reported as potential biocontrol agents 
(White and Traquair, 2006; Pineda-Suazo et al., 2021). Mycoparasitism is a lifestyle 
in which the fungus establishes parasitic interactions with other fungi (Karlsson et 
al., 2017). Mycoparasitic fungi are enzyme producers with the ability to degrade the 
cell walls of fungi, allowing them to penetrate into other fungi to extract nutrients 
for their development (Cao et al., 2009). In this sense, the fungus Irpex lacteus 
is characterized by its saprophytic habit, although it has been proven to have a 
mycoparasitic behavior under certain conditions, implying interactions in which 
I. lacteus colonizes and obtains nutrients from other fungi by secreting diverse 
hydrolytic enzymes (Metreveli et al., 2014; Mezule a d Civzele, 2020; Gafforov 
et al., 2023). The mycoparasitic abilities I. lacteus suggest possible applications 
in the biological control of phytopathogens in the agricultural context (White and 
Traquair, 2006; Sivanandhan et al., 2017; Yin et al., 2021). Due to this, the aim of 
this investigation was to evaluate the fungus I. lacteus (isolate P7B) in vitro with a 
dual confrontation against 22 fungi and one oomycete. 

This work was conducted in the Plant Physiology and Biotechnology Laboratory 
of the Facultad de Ciencias Agropecuarias y Ambientales of the Universidad 
Autónoma de Guerrero (FCAA-UAGro), located in Iguala de la Independencia, 
Guerrero, México. 
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For this study, isolate P7B was taken from an endophytic mycoparasitic fungus, 
which was isolated from the asymptomatic area of the Cedrus sp.  rhizosphere, 
identified molecularly by DNA extraction, and for this purpose, the internal 
transcribed spacer (ITS) region of the ribosomal DNA as amplified by PCR using 
the ITS1/ITS4 primers (White et al., 1990). DNA extraction, PCR, and sequencing 
were performed by the sequencing service of the Macrogen company (Macrogen, 
Inc., Seoul, Korea). The sequences obtained were edited and aligned using the 
MEGA X® program, and a consensus sequence was obtained, which was compared 
with those available in the GenBank.

Isolate I. lacteus P7B underwent a dual confrontation against 22 fungi and one 
oomycete associated to diverse diseases (Table 1), belonging to the collection of 
phytopathogenic fungi of the Plant Physiology and Biotechnology Laboratory of 
the FCAA-UAGro. Strains of phytopathogenic fungi and the mycoparasitic agent 
(P7B) aged 12 days, developed in a PDA medium. For the confrontation, a disk, 0.5 
cm in diameter and with mycelia, was placed 1.0 cm from the edge of the Petri dish 
and each isolation was placed on the opposite side of the dish, equidistantly. Three 
repetitions were used for each fungus or oomycete, along with control treatments, 
which consisted in placing a mycelium disk from each microorganism on one side 
of the Petri dish. The culture media were placed at a temperature of 28 °C, and the 
area of inhibition was recorded using a millimeter ruler when the control treatments 
covered the entire surface of the Petri dish with a PDA medium, which occurred 
approximately 14 days after cultured. Exceptionally, the treatments confronted 
with Rhizopus spp. were incubated for approximately 23 days, since a slow 
mycoparasitism was observed for I. lacteus P7B for this genus. Photographs were 
taken of the advancement of the dual confrontation every 24 hours (Sony camera, 
Vario-Tessar®). Additionally, the area of interaction between microorganisms was 
analyzed against the antagonistic fungus I. lacteus P7B, in order to observe possible 
damages in the structures of the parasitized microorganisms, using a compound 
microscope (LABOMED®).

Based on the values registered of the confrontations between microorganisms 
and the fungus I. lacteus P7B, the percentage of inhibition was estimated using the 
formula = (D1-D2)/D1*100.

where: 
D1= Mycelial diameter of the control
D2= Mycelial diameter of the confronted microorganism 

The analysis of the consensus sequence in the GenBank with the BLAST tool 
showed that isolate P7B had a percentage of identity of 99.85% with Irpex lacteus 
(accession number JX290579). The consensus sequence derived from this study 
was deposited in the GenBank with accession number PP922180.
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Table 1. Microorganisms used in the evaluation for the confrontation with Irpex lacteus P7B from the collection of pyhtopathogenic 
fungi of the Plant Physiology and Biotechnology Laboratory, FCAA-UAGro.

 Microorganisms Identification 
method Reference Host Key Disease

Corynespora 
cassiicola

Morphological and 
molecular

Ortega-Acosta 
et al., 2020

Hibiscus 
sabdariffa CC47GRO Spotting of calyces

Colletotrichum 
gloeosporioides

Morphological and 
molecular

Cruz-Lagunas 
et al., 2020 Citrus paradisi COLTOR1 Anthracnose on fruits

Rhizopus oryzae Morphological and 
molecular

Palemón-Alberto 
et al., 2019

Annona 
muricata ANTRAGUB Soft rot of fruits

Phytophthora sp. Morphological NA* Carica papaya PAP-4 Associated with basal rot

Macrophomina sp. Morphological NA Arachis 
hypogaea C4 Associated with charcoal 

rot of fruits

Colletotrichum sp. Morphological NA Plumeria 
rubra CACALO1 Associated with 

anthracnose on leaves

Rhizopus sp. Morphological NA Stenocereus sp. RIPITA Associated with soft 
rot of fruits

Phoma sp. Morphological NA Parmentiera sp. PHOCUA1 Associated with brown 
rot of fruits

Colletotrichum sp. Morphological NA Citrus paradisi TOCOCE Associated with fruit 
anthracnose

Colletotrichum sp. Morphological NA Stenocereus sp. SALP Associated with fruit 
anthracnose

Fusarium sp. Morphological NA Musa sp. FUPLA Associated with fruit 
spotting

Alternaria sp. Morphological NA Passiflora 
edulis AL1 Associated with fruit 

spotting
Colletotrichum sp. Morphological NA Citrus paradisi TORTEPE Associated with fruit rot

Colletotrichum sp. Morphological NA Eriobotrya 
japonica COLNISP Associated with fruit 

anthracnose

Diplodia sp. Morphological NA Punica 
granatum GRANA1 Associated with fruit spot

Fusarium sp. Morphological NA Persea 
americana AGUAT Associated with stem 

base rot

Colletotrichum sp. Morphological NA Mangifera indica COLMAN Associated with fruit 
anthracnose

Colletotrichum sp. Morphological NA Mangifera indica COLCRIO Associated with fruit 
anthracnose

Rhizopus sp. Morphological NA Carica papaya RIZOPAP Associated with soft 
rot of fruits

Verticillium sp. Morphological NA Mangifera indica VERT1 Associated with vascular 
wilt of stem

Phoma sp. Morphological NA Crescentia alata CRES1 Associated with fruit rot
Phoma sp. Morphological NA Punica granatum GRANPIC Associated with fruit spots
Penicillium sp. Morphological NA Allium sativum AJOPENI Associated with bulb rot

*NA=Not applicable, identified morphologically.
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In the in vitro evaluation of 22 fungi and one oomycete against I. lacteus P7B 
(Table 1), approximately 14 days later, it displayed 100% mycoparasitism on all the 
microorganisms it was confronted with (Figure 1), except for the genus Rhizopus 
(23 days). Figure 2 shows some representative examples of the confrontation 
between I. lacteus P7B against fungi and one oomycete, in which a clear gradual 
mycelial invasion was observed. By the end of the experiment, it was determined 
that the fungus I. lacteus P7B induced an inhibition of 100% in all confrontations 
(Figure 1, 2). 

 

Figure 1. Effect of the confrontation in dual culture in PDA under in vitro conditions between I. lacteus P7B against fungi 
and an oomycete associated to plant diseases.

On the other hand, the fungi and an oomycete confronted with I. lacteus P7B 
all presented degradation of their structures when observed under the microscope. 
For example, Macrophomina sp. (isolate C4), in the zone of interaction, displayed 
degradation of sclerotia and hyphae (Figure 3B); Alternaria sp. (isolate AL1), 
it presented degraded conidia and hyphae (Figure 3D); for Rhizopus sp. (isolate 
RIZOPAP), degradation of sporangia was observed (Figure 3F); in control 
treatments, structures displayed no apparent damage (Figure 3A, C and E). 

This work showed the mycoparasitic ability of I. lacteus P7B against 22 fungi 
and one oomycete associated to diverse phytosanitary problems. Literature on the 
potential of I. lacteus as a biocontrol agent is scarce. The fungus I. lacteus has the 
ability to produce diverse hydrolytic enzymes such as chitinases and glucanases, 
which degrade the cell walls of other fungi, facilitating the acquisition of nutrients 
(Qin et al., 2018; Roncero and Vázquez de Aldana, 2019). In a study carried out 
by White and Traquair (2006), by confronting I. lacteus against Botrytis cinerea 
in vitro, they proved that I. lacteus was able to parasite B. cinerea by degrading 
its structures such as conidiophores and conidia and parasiting its sclerotia, and 
reported a percentage of mycoparasitism of 100%, similar results reported in this 
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study. On the other hand, in Mexico, I. lacteus has been evaluated against Fusarium 
pseudocircinatum, F. mexicanum, Colletotrichum coccodes, C. gloeosporioides, 
Phytophthora capsici and P. cinnamomi with a percentage of inhibition between 
16.7 and 46.3% (Pineda-Suazo et al., 2021). In this investigation, I. lacteus P7B 
displayed a greater capacity for mycoparasiting diverse fungi and an oomycete, 
possibly due to the type of isolation. In addition, I. lacteus has been reported to 
belong to the group of necrotrophic mycoparasites, which are characterized for 
being highly destructive, scarcely specialized (Viterbo et al., 2007) and generally 
presenting a high range of hosts, including phytopathogens and extend to diverse 
taxonomic groups (Viterbo and Horwitz et al., 2010), as in this study, where I. 
lacteus parasite fungi and an oomycete of the divisions Ascomycota, Zygomycota 
and Oomycota. Additionally, compounds, derived from I. lacteus such as terpenes 
and aldehydes, have been detected which have an antifungal potential (Pineda-
Suazo et al., 2021; Wang et al., 2021). 

 

Figure 2. Effect of the confrontation in dual culture in PDA under in vitro conditions between I. lacteus P7B against fungi and 
an oomycete associated to plant diseases. P7B = Irpex lacteus. CC47GRO = Corynespora cassiicola. COLTOR1 = 
Colletotrichum gloeosporioides. PAP-4= Phytophthora sp. C4 = Macrophomina sp. RIZOPAP= Rhizopus sp. Dac = 
Days after confrontation.
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The fungus I. lacteus mycoparasited 100% in vitro 22 fungi and one oomycete 
evaluated in this study. Future investigations may focus on evaluating the antagonistic 
activity of I. lacteus under field conditions for the control of phytopathogens, as 
well as on the evaluation and determination of antifungal compounds derived from 
I. lacteus P7B. 

Figure 3. Effect of the confrontation in vitro of I. lacteus P7B against fungi and an oomycete. A= Macrophomina sp. (isolate 
C4) control; B= Macrophomina sp. (isolate C4) confronted with I. lacteus P7B, a degradation of sclerotia and hyphae 
can be observed. C = Alternaria sp. (isolate AL1) control; D = Alternaria sp. (isolate AL1) confronted with I. lacteus 
P7B, in which a degradation of conidia and hyphae can be observed. E = Rhizopus sp. (isolate RIZOPAP) control; F = 
Rhizopus sp. (isolate RIZOPAP) confronted with I. lacteus P7B, shows degraded sporangia. Images captured with an 
optic microscope with 10X (A, B, E and F), and  40X objective lens (C and D).

 
A B C 

D E F 
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