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ABSTRACT

Objetive/Antecedents. Persian lime (Citrus latifolia) shows a very high level 
of tolerance to Huanglongbing (HLB). A recent study suggests that genes from 
the RPM1-RIN4-RPS2 complex could be partly responsible for HLB tolerance in 
Persian lime, unlike other highly susceptible species such as orange (C. sinensis). 
The objective of this study was to compare the expression of this gene complex 
between orange, highly susceptible to HLB, and Persian lime, a tolerant species.

Materials and Methods. Sequences of the three genes of the complex for orange 
and Persian lime were obtained from databases of previously published works, 
alignments and primer design for gene expression were performed using various 
bioinformatics tools. Subsequently, tissue samples from symptomatic HLB-
infected orange and Persian lime were obtained and infection was confirmed. The 
expression of the RPM1-RIN4-RPS2 genes was compared using endpoint RT-PCR.

Results. The presence of all three genes of the complex was determined in both 
orange and Persian lime, and it was also determined that they are highly conserved 
between both species. Additionally, it was observed that there is no differential 
expression for the RPM1 gene in symptomatic HLB tissue; however, there is a 
difference in the expression of the RPS2 and RIN4 genes.

Conclusion. The results suggest that the contrasting response to HLB could be 
associated with the activity of the interaction of the RIN4 and RPS2 genes, thus, 
this could be of interest for citrus genetic improvement aiming at HLB control.
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Introduction

Globally, citrus cultivation is suffering severe damage due to the effects of 
Huanglongbing (HLB) on all citrus species and varieties (Ghosh et al., 2022). HLB 
is caused by three different species of the genus Candidatus Liberibacter (CL): CL 
americanus (CLam), which affects cultivars in Brazil (Teixeira et al., 2005), CL 
africanus (CLaf), found on the African continent (da Graça et al., 2022), and CL 
asiaticus (CLas), the most widespread species globally (Ajene et al., 2020) and 
present in citrus-growing areas of Mexico (Huang et al., 2022).

Although all agriculturally important citrus species are considered susceptible 
to the disease, there is a gradient of susceptibility among different species, with a 
notable difference between sour and sweet citrus (McCollum et al., 2016; Gao et 
al., 2023). The Valencia orange (C. sinensis), considered a sweet citrus, is one of the 
most important citrus fruits in Mexico, both in terms of planted area and economic 
impact (SIAP, 2022); however, it is also among the species most susceptible to 
HLB. Numerous studies using omics tools have shown that CLas infection causes 
significant metabolic, physiological, and molecular alterations in C. sinensis (Fu et 
al., 2016; Chin et al., 2020; Curtolo et al., 2020; Lally et al., 2021; Ribeiro et al., 
2023), leading to significant economic losses (Li et al., 2020). On the other hand, 
some sour citrus species have been reported as less susceptible or tolerant to HLB, 
for example, rough lemon (C. jambhiri) (Yu et al., 2017), Australian finger lime (C. 
australasica) (Weber et al., 2022), and Persian lime (C. latifolia) (Sivager et al., 
2021).

The case of Persian lime is of high importance for Mexico, with Veracruz being 
the leading producer and exporter of this fruit worldwide. Therefore, understanding 
the mechanisms involved in HLB tolerance is crucial. Initially, this tolerance was 
associated with a greater ability to maintain unaltered physiological functions 
such as photosynthesis, stomatal conductance, and transpiration (Sivager et al., 
2021). Later, it was observed that, unlike in Poncirus trifoliata (Rawat et al., 2017), 
the CDR gene family is not related to tolerance (Flores-de la Rosa et al., 2023). 
Recently, the transcriptome of Persian lime infected with CLas was sequenced 
and assembled, revealing differentially expressed genes, notably those related to 
effector-triggered immunity (ETI) showing increased expression, such as the RPS2 
gene (Estrella-Maldonado et al., 2023). 

The RPS2 gene is part of a complex comprised of the RPM1-RIN4-RPS2 genes. 
The relationship among these genes is intricately linked to the plant’s response to 
infection by certain pathogens. For instance, the RPM1 gene acts as a receptor for 
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effectors from the bacterium Pseudomonas syringae and triggers effector-triggered 
immunity (ETI) in Arabidopsis (Rose et al., 2012), with this activation mediated 
by the phosphorylation of the RIN4 gene (Lee et al., 2015); that is, RIN4 induces 
the expression of RPM1. On the other hand, the RPS2 gene can activate immunity 
against the aforementioned bacterium; however, its interaction with the RIN4 gene 
is negatively regulated, meaning the expression of RPS2 inhibits RIN4 and vice 
versa (Alam et al., 2021).

Interestingly, experimental evidence showed that overexpression of the RIN4 
gene facilitates the colonization of CLas in the phloem of citrus and the generation 
of HLB symptoms (Cheng et al., 2022), suggesting that susceptibility to HLB 
might be associated with the level of activity of the RIN4 gene. Therefore, based 
on the above, the aim of the present work was to compare the expression of the 
genes in the RPM1-RIN4-RPS2 complex in two species with contrasting responses 
to HLB: Valencia orange, highly susceptible, and Persian lime, with high tolerance 
to CLas infection.

The transcript sequences of the ClRPM1, ClRIN4, and ClRPS2 genes were 
obtained from the assembled Persian lime transcriptome by Estrella-Maldonado 
et al. (2023), using local BLAST analysis with the CsRPM1, CsRIN4, and CsPS2 
gene sequences retrieved from the Citrus Genome Database (https://www.
citrusgenomedb.org/). Subsequently, an alignment between the homologs of each 
species was performed using the online T-COFFEE software (https://tcoffee.crg.
eu/apps/tcoffee/index.html). Figure 1 presents the alignment of the CsRIN4 and 
ClRIN4 genes. 

Once the genes were identified and obtained, primers were designed 
to measure their expression, which was carried out using the Eurofins 
online software (https://eurofinsgenomics.eu/en/ecom/tools/pcr-
primer-design/). The following primers were generated: for the RPM1 
gene, the primers RPM1-F (5´-GCCCTGGATTTGCTGAAG-3´) and 
RPM1-R (5´-GCAATATTCAACAACTCTGGGA-3´) were obtained, 
expected to yield a 130 bp product; for the RIN4 gene, the primers 
RIN4-F (5´-GCGAGAGGAGAGAAACAGTGCAGG-3´) and 
RIN4-R (5´-GACGATGATGGGGTGTGGTGGA-3´) were designed, 
aimed to produce a 165 bp product; finally, for the RPS2 gene, the 
primers RPS2-F (5´-TGGTTCGATATGTAGTGGGG-3´) and RPS2-R 
(5´-CTGCTTCACTGCTGTTAGAC-3´) were obtained to yield a 135 bp product. 
All amplification reactions were performed at 60 °C for the annealing temperature.

To conduct the expression assays for the complex, samples of physiologically 
mature leaves with HLB symptoms from Valencia orange and Persian lime (Figure 
1) were collected. Tissues were gathered from three different trees of each species. 
The collection was carried out in an experimental plot naturally infected with 
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CLas, located at the INIFAP Campo Experimental Ixtacuaco (CEIXTA), situated 
at an elevation of 112 meters above sea level (20° 02’ 36’’ N, 97° 05’ 52.5’’ W). 
The trees were seven years old and grafted onto Swingle rootstock. Samples were 
immediately frozen in liquid nitrogen and transported to the CEIXTA Phytosanitary 
Diagnosis laboratory. The tissue was macerated and divided into two parts, one for 
CLas detection and the other for the expression assay.

For CLas detection, DNA extraction was performed using the protocol 
described by Rodríguez-Quibrera et al. (2022), followed by DNA integrity 
and quality analysis through agarose gel electrophoresis (1%, 90 V for 
60 min) and nanodrop spectrophotometry, respectively. Subsequently, a 
portion of the protocol described by Lin et al. (2010) was used, involving 
the amplification of a fragment of the 16S ribosomal gene with the primers 
Las-O-F (5′-CGGTGAATGTATTAAGCTGAGGCGTTCC-3′) and Las-O-R 
(5′-TACCCACAACAAAATGAGATACACCAACAACTTC-3′). 

For the gene expression assays of the complex under study, RNA extraction 
was performed using a 2% CTAB protocol (Estrella-Maldonado et al., 2023). The 
RNA obtained was analyzed for integrity and quality using horizontal agarose gel 
electrophoresis (1%, 90 V for 60 min) and nanodrop spectrophotometry, respectively. 
High-quality RNAs were treated to eliminate residual DNA using the DNase RQ1 
enzyme (Promega) according to the manufacturer’s instructions. cDNA synthesis 
was carried out starting from a concentration of 500 ng µL-1 of DNase-treated RNA 

 
Figure 1. Alignment of CsRIN4 and ClRIN4 genes sequences.
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using the M-MLV enzyme (Promega), following the manufacturer’s instructions. 
Amplification of the genes of the complex under study was performed by RT-PCR. 
For this amplification, the reaction mixture contained 1X PCR buffer, 25 mM 
MgCl2, 10 mM of each dNTP, 10 µM of each primer, 1 U of DNA Taq 
polymerase, and 300 ng of cDNA, resulting in a final reaction volume of 10 µL. 
The thermal cycling profile consisted of an initial denaturation at 94 °C, followed 
by 30 cycles of denaturation at 94 °C for 30 s, annealing at 60 °C for 30 s, and 
elongation at 72 °C for 15 s, with a final extension at 72 °C for 3 min. The 
amplification product was analyzed on a 2% agarose gel, stained with 1.2% 
ethidium bromide, and visualized under UV light. The F-box gene was used as an 
endogenous control (Mafra et al., 2012). Each sample was amplified in triplicate 
as a technical replicate.

Regarding the detection of the HLB causal agent in the samples, a unique fragment 
of 470 bp (data not shown) was obtained in symptomatic samples (Figure 2) from 
Persian lime (three samples) and Valencia orange (three samples), corroborating 
the infection of the samples with CLas according to the protocol used.

According to the gene expression results, RT-PCR amplification showed 
that there is no observable difference between the Valencia orange and Persian 
lime samples for the RPM1 gene. However, for the RPS2 gene, a difference in 
the intensity of the amplified band was observed, being greater in Persian lime 
than in orange, suggesting a difference in the activity of this gene in response to 
CLas infection, consistent with previous observations by Estrella-Maldonado et 

Figure 2.	Symptoms of HLB present in Persian lime leaves (A), Valencia orange (B), Persian lemon (C) and Valencia 
orange (D) fruits.
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al. (2023). However, the main difference was observed in the amplification of the 
RIN4 gene, which is clearly amplified in Valencia orange, while amplification of 
this gene is not detectable in Persian lime. This suggests a higher activity of the 
RIN4 gene in a species highly susceptible to HLB, in contrast to a species with 
a high level of tolerance such as Persian lime, similar to the proposed role of 
the RIN4 gene in CLas infection (Cheng et al., 2022). The results are shown in 
Figure 3. 

Figure 3.	Expression of the RPM1-RIN4-RPS2 complex by RT-PCR in Valencia orange, a species highly 
susceptible to HLB, and Persian lime, a species with a high level of tolerance to HLB. 

 

It has recently been described that Huanglongbing (HLB) is more closely related 
to an exaggerated and uncontrolled defense response to CLas than to the damage 
caused directly by the pathogen itself (Ma et al., 2022). Therefore, understanding 
the mechanisms altered in plant defense is crucial for designing strategies to control 
this disease. The findings of this study provide evidence supporting the hypothesis 
that CLas infection and HLB development are facilitated by the expression of the 
RIN4 gene. This phenomenon has been observed in other pathosystems, where 
RIN4 acts as a repressor of Pattern-Triggered Immunity (PTI) (Ray et al., 2019), 
particularly by inactivating the response through RPS2 (Belkhadir et al., 2004), 
while its phosphorylation induces Effector-Triggered Immunity (ETI) activation 
(Xu et al., 2017). It is significant that overexpression of RIN4 has been shown to 
inhibit callose deposition in response to pathogens (Afzal et al., 2011; Ray et al., 
2019), such inhibition of callose production being one of the mechanisms CLas 
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uses to translocate within the phloem (Bernardini et al., 2022), whereas the increase 
in callose in areas with low CLas presence is more due to the plant’s uncontrolled 
response (Archor et al., 2020; Ma et al., 2022).

This study presents evidence of differential expression of the RIN4 gene among 
citrus naturally infected with CLas (six samples analyzed), according to their 
susceptibility level to HLB. Further studies are required to confirm this hypothesis; 
however, our results suggest that the RIN4 gene is an important molecular target for 
inducing HLB tolerance using biotechnological tools (Sun et al., 2019). 
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