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ABSTRACT

White mold (Sclerotinia sclerotiorum) is the main disease of bean and potato in 
Sinaloa. In the present review, the symptoms and signs of the disease as well as 
cultural and morphological characteristics of the teleomorph of the pathogen, its 
ecology and the epidemiology of the disease are addressed. The implementation 
of a prediction system which includes the carpogenic germination of the sclerotia 
and the phenology of both bean and potato for the management of the disease is 
described. This system considers soil temperature ranging from 13 to 19 °C a at 
depth of 2.5 cm in the soil and the flowering stage in both bean and potato to do the 
first spray application of synthetic fungicide to prevent the disease. In vitro studies 
indicated that Trichoderma harzianum, T. viride and T. atroviride reduced mycelial 
growth rate of S. sclerotiorum. The same antagonistic species exerted control of 
white mold under field conditions, where an increment of 40% of yield was observed 
in the treated plots, with respect to those treated with fungicide fluazinam. Future 
lines of research focusing on the ecology of the pathogen and management of the 
disease including the antagonistic fungi in the prediction system are suggested. 
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Introduction

In Mexico, bean (Phaseolus vulgaris) and potato (Solanum tuberosum) crops 
covered an area of 1,472,462 and 60,102 ha in 2022, respectively. Bean production 
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reached 965,371 t with a value of 16,984 million pesos, while potato production 
yielded 1,878,976 t valued at 16,173 million pesos (SIAP, 2022). In Sinaloa, 
during the same year, 58,925 ha of beans were planted, yielding 165,475 t with 
a production value of 3,271 million pesos. For potatoes, 11,975 ha were planted, 
producing 403,923 t valued at 3,363 million pesos. Fungal diseases stand out as a 
limiting factor for both crops in Sinaloa. For instance, beans are affected by root 
rots (Fusarium spp., Rhizoctonia solani, Pythium spp., Macrophomina phaseolina, 
and Sclerotium rolfsii), white mold (Sclerotinia sclerotiorum), rust (Uromyces 
appendiculatus var. appendiculatus) (Rodríguez-Cota et al., 2022), and powdery 
mildew (Erysiphe diffusa) (Félix-Gastélum et al., 2011). Regarding bacterial 
diseases, common blight (Xanthomonas axonopodis pv. phaseoli) (Rodríguez-
Cota et al., 2022) and halo blight (Pseudomonas syringae pv. phaseolicola) (Félix-
Gastélum et al., 2016) are prominent.

Sclerotinia sclerotiorum is a phytopathogen that affects 408 species belonging 
to 278 genera and 75 families. Most susceptible species are in the subclass 
Dicotyledonae of angiosperms, although it can also attack several members of 
the subclass Monocotyledonae (Boland and Hall, 1994; Islam et al., 2021; Jahan 
et al., 2022). It can also occur as an endophyte in cereals such as rice (Oryza 
sativa), wheat (Triticum aestivum), maize (Zea mays), barley (Hordeum vulgare), 
and oat (Avena sativa) (Tian et al., 2020). Annual losses due to white mold in the 
United States exceed $200 million (Bolton et al., 2006). In Sinaloa, the disease 
has been reported in eggplant (Cebreros-Sánchez and Sánchez-Castro, 1998) and 
beans (Rodríguez-Cota et al., 2022), with losses of 50%, while in potatoes they 
can reach 30%. Despite this, no applied research has been conducted on disease 
management. This review describes white mold symptoms in beans and potatoes in 
northern Sinaloa, the morphological characteristics of S. sclerotiorum teleomorph, 
its ecology, and disease epidemiology, as well as management strategies used in 
other parts of the world. It also outlines the current situation of disease management 
in Sinaloa and future research directions needed for efficient control of white mold 
in beans and potatoes in this region. 

Symptoms and signs of the disease

Bean and potato plants infected by S. sclerotiorum display typical white, cotton-
like mycelium on the infected tissue surface. The mycelium produces cellulases 
and pectinases, which are involved in the infection process and cause plant tissue 
rot (Fernando et al., 2004; Bolton et al., 2006). It also produces oxalic acid, which 
has toxic effects on host tissue (Hegedus and Rimmer, 2005). In the field, wilted 
plants show watery lesions on stems, leaves, and pods. Infected tissue is covered 
with whitish mycelium. In advanced stages, mycelial aggregations occur, which 
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mature and transform into black sclerotia of various shapes, ranging from 0.5 to 1.7 
cm. These are found mainly on the whitish tissue surface, although they can also be 
found inside stems (Hooker, 1981). 

Morphological characteristics of the causal agent (S. sclerotiorum) of white 
mold in Sinaloa

White mold on beans and potatoes occurs year after year in Sinaloa. Colonies 
of S. sclerotiorum isolated on potato dextrose agar (PDA) are white, cotton-like, 
regular, with slightly elevated growth. Sclerotia form a double ring in the Petri 
dish, both in the center and at the edge near the dish wall (Figure 1A). Although 

Figure 1. Mycelial growth and sclerotia of Sclerotinia sclerotiorum. A) Fungal growth obtained from bean with sclerotia 
forming a double circle on PDA in a Petri dish; B) Light brown sclerotia produced on bean plants in the field; 
C) Fungal growth obtained from potato plant with scattered sclerotia on PDA in a Petri dish; D) Black sclerotia 
produced on potato plants in the field.
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fungal colonies from potatoes were similar to those from beans, sclerotia were 
produced sporadically on PDA (Figure 1C). Several species of Sclerotinia have 
been reported as phytopathogens, but in this region, only S. sclerotiorum has been 
identified as the causal agent (Mora-Romero et al., 2016). The fungus survives the 
summer through sclerotia, which measure 0.5 to 1.7 cm in length when produced 
on beans (Figure 1B) and 0.3 to 1.0 cm when produced on potatoes (Figure 1D), 
and produce one to several light brown apothecia 0.5 to 0.8 cm in diameter (Figure 
3D). Apothecia are more common in potato fields, likely due to high humidity 
levels generated by sprinkler irrigation systems. The hymenium of the apothecia 
has asci measuring 85.0 to 160.0 µm by 3.0 to 5.5 µm (Figure 3B) and hyaline 
paraphyses; the ascospores are also hyaline, unicellular, ovoid to elliptical, and 
measure 5 to 7.0 µm (Figure 3C). 

Field observations in Sinaloa indicate that in beans, the disease frequently 
initiates at the base of plant stems (Figure 2A), suggesting that the initial infection 
likely occurs through direct germination of sclerotia (myceliogenic). From there, the 
symptom progresses to stems, leaflets, and pods (Figure 2B and 2C) where cottony, 
whitish mycelium forms, causing soft rot and initiating sclerotia formation (Figure 
2D). This observation agrees with previous studies where sclerotia germinate to 
produce mycelium that infects plants (Abawi and Grogan, 1979; Lane et al., 2019).

In potatoes, sclerotia have been observed inside stems (Figure 3A), as well as 
fungal apothecia on the soil surface (Figure 3D) with asci (Figure 3B) containing 
eight ascospores (Figure 3C). Infected inflorescences falling onto leaves have also 
been observed, from which initial disease symptoms originate (Figure 3E) and 
progress to invade the rest of the plant parts (Figure 3F). Stems on the ground 
showing disease symptoms and signs have also been observed (Figure 3G), where 
infection may originate from direct germination of sclerotia.  

Ecology of S. sclerotiorum 

S. sclerotiorum is a soil-dwelling fungus that survives through sclerotia (Sousa-
Melo et al., 2019). The outer layer of sclerotia consists of melanin-containing cells 
(Butler et al. 2009), protecting the fungus from ultraviolet light, toxic metals, lytic 
enzymes, and antagonistic microorganisms (Butler and Day, 1998; Thomma, 2003). 
In some bean-cultivated soils, averages of 0.6 to 6.2 sclerotia per kg of soil have 
been found (Schwartz and Steadman, 1977). Soil temperature, pH, and moisture 
seem to have a limited effect on sclerotia survival, but the biological component 
has a greater impact on their survival in soil (Adams and Ayers, 1979). Sclerotia 
quantity in soil can increase in two ways: a) secondary sclerotia production and b) 
production on the host (Adams and Ayers, 1979).

The fungus’s wide host range (Toby et al., 2023) and susceptible monocultures 
lead to increased sclerotia populations in soil. Sclerotia survival varies with depth; 
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Figure 2. Symptoms and signs of white mold in beans. A). Disease symptoms initiating at the base of 
the plant stem; B). Progression of symptoms and signs on stems; C). Symptoms and signs on 
pods; D). Whitish stems invaded by S. sclerotiorum with mycelial aggregation and abundant 
sclerotia.
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Figure 3. Teleomorph structures of S. sclerotiorum, symptoms and signs of white mold. A). Potato stem with sclerotia 
inside; B). Fragment of apothecial hymenium with asci, ascospores, and paraphyses; C). Ascus containing eight 
ascospores; D). Apothecia produced by sclerotia on soil surface; E). Initial symptom of white mold on potato 
leaf originating from an infected inflorescence; F). Soft rot of leaves and presence of mycelium on infected 
tissue; G). Stem on soil colonized by the fungus with abundant whitish mycelium. 
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studies showed that sclerotia placed deeper than 10 to 30 cm remained viable longer 
than those at 5 cm (Cosic et al., 2012). It was also reported that S. sclerotiorum 
sclerotia viability at 0, 5, and 10 cm decreased with depth (Duncan et al. 2006). 
Other studies indicated that S. sclerotiorum sclerotia remain viable in soil for eight 
to 10 years (Coley-Simth and Cooke, 1971). It was demonstrated that 3.2 sclerotia 
per m² can cause 95% incidence in kidney beans under field conditions (Suzui and 
Kobayashi, 1972). However, 0.2 sclerotia per kg of soil could cause moderately 
severe white mold levels in beans (Schwartz and Steadman, 1977). Ascospores 
constitute the primary inoculum source, germinating and colonizing senescent 
tissue, from which the fungus invades different plant parts (Hossain et al., 2023).

S. sclerotiorum spreads from one field to another or between regions in several 
ways: a) as mycelium attached to seed surfaces, b) farming equipment (Zubieta-
Coronado, 2021), animals, or humans (Starr et al., 1953). About 2% of sclerotia 
ingested by sheep remain viable after passing through their digestive system, 
suggesting that this type of livestock and other animals can spread sclerotia to 
pathogen-free areas (Brown, 1937). Irrigation water is another means of sclerotia 
dissemination, where they remain viable for 10 to 21 days (Steadman et al., 
1975). However, long-distance spread occurs through mycelium-infected seeds 
in sunflower (Helianthus annuus) (Young and Morris, 1927), cabbage (Brassica 
oleracea var. capitata), cauliflower (Brassica oleracea var. botrytis), kale (Brassica 
oleracea var. sabellica) (Neergaard, 1958), clover (Trifolium sp.) (Dillon-Weston 
et al., 1946), beans (Starr et al., 1953), and peanuts (Arachis hypogaea) (Porter 
and Beute, 1974). Air as an element for ascospore dissemination has also been 
considered in recent years (Leyronas, 2019; Reich et al., 2024). 

Epidemiology of white mold in beans and potatoes

White mold epidemics in beans and potatoes initiate from ascospores produced 
in apothecia originating from sclerotia (Abawi and Grogan, 1979; Cook et al., 1975; 
Schwartz and Steadman, 1978; Clarkson, et al., 2003). In Sinaloa, damage has been 
observed on potato stems at the furrow bottom; bean plants also show damage 
at the stem base, occurring through direct sclerotia germination. Thus, apothecia 
production by sclerotia in beans is essential for epidemic development (Abawi 
and Grogan, 1979). In contrast, in some Canadian regions, sclerotia can produce 
mycelium directly to cause infection below soil level in sunflowers, although 
infection can also occur through ascospores from apothecia (Hung and Hoes, 
1980). Only apothecia on the soil surface at 2.0-3.0 cm depth release ascospores, 
as apothecial stipes do not exceed 3.0 cm in length, and those at greater depths do 
not emerge above the soil surface and do not release ascospores into the air, as light 
intensity is insufficient for their formation (Sun and Yang, 2000). An epidemic’s 
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onset does not necessarily occur from ascospores produced in a particular field 
but can come from neighboring fields, including some weeds like dandelion 
(Taraxacum officinale) and clover (Trifolium spp.) (Cooke et al., 1975). The first 
apothecia appear when the crop covers 100% of the soil surface and evaporation 
decreases (Abawi and Grogan, 1979).

Exposure of sclerotia to extreme drought and high temperatures has been 
observed to have a detrimental effect on apothecia production by sclerotia; however, 
they remain viable for three years at a depth of 20 to 25 cm in the soil (Peltier et 
al., 2012). Hao et al. (2007) demonstrated that carpogenic germination of sclerotia 
occurred between 15 and 20°C, when soil water matric potential was -0.03 to 0.07 
MPa; but no apothecia were produced at temperatures above 26°C (Clarkson et 
al., 2003). Apothecia produce ascospores whose dispersal from the point of origin 
can vary from 25 cm (Suzui and Kobayashi, 1972) to several km (Leyronas et 
al., 2019), and the optimal temperature for their germination on bean flowers with 
free moisture is 21°C (Shahovesi and del Río-Mendoza, 2020). It has also been 
established that ascospores are released at 15°C in continuous light and darkness 
and relative humidity regimes of 90 to 95% and 65 to 75% with the release of 
7.6 x 10⁵ ascospores per apothecium in 20 days. The release of S. sclerotiorum 
ascospores in the field has been observed at midday (Harthill, 1976; Raynal, 1990), 
which could be related more to temperature than to daylight (Clarkson et al., 2003).

Management of white mold

White mold management has involved solarization (Ferraz, 2003; Supriya et 
al., 2017; Juliatti et al., 2019), crop rotation, and chemical control (Kurozawa and 
Pavan, 1997). Due to low levels of host resistance to the pathogen, a wide range 
of fungicides has been used to control the disease. For example, in the United 
States, Canada, Australia, China, and Europe, boscalid, fluazinam, fluxapyroxad, 
pyraclostrobin, penthiopyrad, picoxystrobin, prothioconazole, trifloxystrobin, 
tetraconazole, and thiophanate-methyl are used (Matheron and Porchas, 
2004; Bradley et al., 2006; Wang et al., 2015). The biological effectiveness of 
procymidone and fluazinam was demonstrated in controlling white mold in 
soybeans when applied at the beginning of flowering and 15 days after flowering 
began (Hideki-Sumida et al., 2015). In Sinaloa, carbendazim, benomyl, methyl 
thiophanate, and fluazinam are used to control the disease in beans and potatoes 
(Rodríguez-Cota et al., 2022; Personal communication, Ing. Joel González; Pasa, 
SA de CV, Los Mochis, Sinaloa), achieving 85-90% control efficacy in both crops 
when applied preventively. Fungicides boscalid+pyraclostrobin, carbendazim, 
fluazinam, fludioxonil+cyprodinil, and prochloraz showed in vitro effectiveness in 
inhibiting mycelial growth of S. sclerotiorum, as did biorational products: salicylic 
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acid, hydrogen peroxide, and grapefruit seed extract (Ayala-Armenta et al., 2015). 
There is no field evidence on the biological effectiveness of these substances except 
for carbendazim and fluazinam (Rodríguez-Cota et al., 2022).

Regarding biological control, the activity of antagonistic agents is affected by 
abiotic and biotic factors such as temperature, soil type and moisture, pH, pesticides, 
organic matter, soil microorganisms, plant species, among others, leading to these 
agents being less effective than synthetic chemical fungicides (Smolińska and 
Kowalska, 2018).

Several fungal species have shown biological control with mycoparasitic 
activity against S. sclerotiorum, with Coniothyrium minitans standing out (Huang 
and Hoes, 1976; McQuilken et al., 1995; Zeng et al., 2012b; Patel et al., 2020). 
Spraying fungal conidia during flowering reduced white mold incidence in beans 
by 56% (Huang et al., 2000). Additionally, incorporating the mycoparasite on 
the soil surface before soybean planting reduced disease severity by 68% and the 
number of sclerotia by up to 95.3% (Zeng et al., 2012a). The optimal temperature 
for mycoparasite growth was 15 to 20°C and a pH of 4.5 to 5.0 (Zeng et al., 2012b). 

Preliminary studies on biological control of the causal agent of bean white mold 
in Sinaloa demonstrated the in vitro inhibitory effect of endemic Trichoderma 
harzianum, T. viride, and T. atroviride from northern Sinaloa against S. sclerotiorum 
obtained from beans (Félix-López, 2016). Additionally, in a semi-commercial field 
experiment, Trichoderma strains were applied to bean seeds at planting; a second 
application was made in the furrow irrigation system. A reduction in white mold 
incidence and severity was observed, along with a 40% yield increase compared to 
the regional control, where two applications of the fungicide fluazinam were made 
(Personal communication Ing. Fernando Urías; Asociación de Agricultores del Río 
Sinaloa Poniente, Guasave Sinaloa).

Studies on the efficacy of Trichoderma in controlling S. sclerotiorum in the 
field are limited (Knudsen et al., 1991; Zeng et al., 2012a); however, in beans, 
Trichoderma asperellum at a dose of 2x10¹² conidia per mL reduced the number 
of apothecia and white mold severity (Geraldine et al., 2013). T. hamatum reduced 
disease incidence by 31 to 57%, resulting from sclerotia colonization and reduced 
apothecia production by the pathogen in cabbage (Brassica oleracea var. capitata) 
(Jones et al., 2015). In cucumber (Cucumis sativus), T. harzianum T39 reduced 
stem and fruit rot in greenhouses (Elad, 2000); while the T22 strain of the same 
antagonist decreased the disease severity index by 38.5% (Zeng et al., 2012a).

Regarding antagonistic bacteria, Bacillus cereus and B. subtilis affected S. 
sclerotiorum mycelial growth and reduced white mold incidence in sunflower 
(Zazzerini, 1987). B. subtilis BY-2 controlled the same disease in rapeseed (Brassica 
napus) when applied to seeds and during flowering; incidence in bacteria-treated 
plots ranged from 8.9 to 11.8%, while in untreated plots, it ranged from 18.1-22.9% 
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(Hu et al., 2014). Two weekly applications of B. cereus SC reduced canola stem rot 
by S. sclerotiorum by 6.5 to 9.3%, while control plots had 20.0 to 29.8% incidence 
(Kamal et al. 2015). The efficacy of bean seed treatment with Bacillus sp. B19, 
Bacillus sp. P12, and B. amyloliquefaciens B14 in controlling white mold was also 
demonstrated (Sabaté et al., 2018).

Survival of S. sclerotiorum and disease incidence

Sclerotia constitute the pathogen’s survival structure during summer in Sinaloa, 
as both beans and potatoes develop during autumn-winter, contrary to other 
agricultural areas where they survive the winter and crops develop during spring-
summer.Previous studies indicated that carpogenic germination of apothecia can 
occur between 5 and 25°C, when soil water matric potential is -0.03 to 0.07 MPa 
(Hao, et al., 2007). Field observations in northern Sinaloa indicate that these 
temperatures at 2.5 cm soil depth occur from the first week of December (Figure 
4). These conditions coincide with the flowering stage of both beans and potatoes; 
additionally, 100% of the soil surface is covered by plant foliage, reducing 
evaporation, mainly in potatoes whose varieties grow exuberantly and are irrigated 

Figure 4. Daily periods with optimal soil temperature (2.5 cm depth) for germination of S. sclerotiorum sclerotia and periods 
with relative humidity > 90% in northern Sinaloa from October 20 to December 03, 2002.
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by sprinklers, resulting in leaf wetness periods up to 17 hours daily in the lower 
part of the canopy of the plants and permanent moisture on the soil surface near 
saturation. These climatic variables and crop phenology favor apothecia formation 
and subsequent ascospore release, which penetrate and infect senescent flowers 
that detach and fall onto plant leaves and stems where initial disease symptoms 
are observed. Symptoms and signs of the disease are also frequently observed at 
the stem base in bean plants or on potato stems on the soil at the furrow bottom; 
in these cases, primary infection could occur from direct sclerotia germination 
(Hossain et al., 2023).

Although it has been reported that exposure of sclerotia to drought and 
temperatures of 30°C does not favor apothecia production by sclerotia, they remain 
viable and germinate through mycelium formation (Abawi and Grogan; 1979). 
These climatic conditions occur in potato fields that are not planted in the spring-
summer cycle in Sinaloa and are subjected to tillage for planting in the autumn-
winter agricultural cycle. In this case, sclerotia at 5 cm soil depth are exposed to 
40°C and low moisture levels (15 bars) (Sifuentes-Ibarra et al., 2021) in fallow 
fields during summer; although 50% of the fields are planted with sorghum, where 
the temperature could be lower than 40°C.  

Management of white mold in beans and potatoes in Sinaloa

In Sinaloa, a system was recently implemented where the first preventive 
application of synthetic fungicides in bean and potato fields is recommended when 
soil temperature at 2.5 cm depth varies from 13 to 19°C. These conditions occur 
during the first week of December in Ahome municipality, coinciding with increased 
periods of relative humidity ≥ 90% (Figure 4). For beans, these conditions occur 
when the first supplementary irrigation has been applied, the crop covers 100% of 
the soil surface, and flowering has begun with the accumulation of 630 heat units 
in the Noroeste variety. The first fungicide application should be made seven days 
after temperatures of 13 to 19°C are recorded, which favors apothecia formation 
and ascospore release.

These criteria also apply to white mold management in potatoes, where 
moisture conditions in both foliage and soil are favorable for apothecia formation, 
ascospore release, and disease progression due to sprinkler irrigation systems. As 
in beans, preventive fungicide applications in potatoes begin seven days after soil 
temperature at 2.5 cm depth varies from 13 to 19°C and the crop presents the first 
inflorescences; at this stage, the soil is completely covered by foliage, reducing 
evaporation of moisture supplied by irrigation systems. Fungicides carbendazim, 
benomyl, methyl thiophanate, and fluazinam are used for disease control under 
these conditions (Rodríguez-Cota et al., 2022). Based on this disease management 



Mexican Journal of Phytopathology. Review Article. Open access

Félix-Gastélum et al.,  2024. Vol. 42(3): 29 12

system, two applications are recommended for beans during the crop cycle, and up 
to three applications at seven-day intervals are recommended for potatoes, mainly 
in varieties with prolonged flowering periods. Infected senescent flowers infected 
by ascospores frequently fall onto plants where initial disease symptoms appear. 
Due to soil moisture levels, damage also occurs on stems and senescent leaves with 
subsequent production of sclerotia that survive up to five years (Ben-Yephet et al., 
1993). In Sinaloa, soils used for potato monocultures show increased populations 
of sclerotia, which produce primary inoculum consisting of ascospores cycle after 
cycle.

FUTURE LINES OF RESEARCH 

Although S. sclerotiorum attacks economically important crops in Sinaloa, 
studies on its ecology have not been developed there. Research on this topic has 
been conducted mainly in the United States, where beans and potatoes are cultivated 
during spring and summer, contrasting with Sinaloa where these crops are grown 
during the autumn-winter cycle. This indicates potential research areas related to 
planting cycles and regions where temperature and different moisture regimes affect 
sclerotia at various depths, as well as the activity of antagonistic microorganisms 
under these conditions.

Regarding white mold control, fungicides have traditionally been used. 
However, these molecules induce resistance in the causal agent and contaminate 
the environment. In the search for environmentally friendly strategies to control 
the disease, the biological effectiveness of native Trichoderma species should be 
determined. This approach is crucial for identifying fungal species in the region, 
determining their in vitro effectiveness, and understanding the antagonist’s modes 
of action against the pathogen under these conditions, such as mycoparasitism, 
antibiosis, resistance-inducing genes, and pathogen enzyme deactivation. The 
greater the number of modes of action of Trichoderma species, the more efficient 
and long-lasting the control over the pathogen will be, aspects that synthetic 
chemical fungicides do not possess (Infante et al., 2000).

Another point to address is investigating the biological effectiveness of 
Trichoderma species in planta under greenhouse and field conditions, including 
induced resistance (Bisen et al., 2016). In the field, the effect of applications to seed 
tubers at planting time and subsequent applications through the sprinkler irrigation 
system during each irrigation throughout crop growth should be determined.

The reduction in sclerotia viability of Sclerotinia species is likely due to the 
action of beneficial microorganisms (Williams and Western, 1965). Hence the 
importance of testing the efficacy of Trichoderma species applied at harvest time 
for both beans and potatoes. Thus, when fields are tilled, the sclerotia inoculated 
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with antagonistic species to the white mold fungus would by incorporated to the 
soil. It would also be necessary to determine sclerotia viability at different soil 
depths, as well as the effect of soil temperature and moisture throughout the 
year; simultaneously determining Trichoderma incidence levels on the sclerotia 
and their capacity to germinate directly and through apothecial production. The 
extensive study of biological control agents is evident, with research limited to in 
vitro and greenhouse conditions, but little has been directed towards field conditios 
(Córdova-Albores et al., 2021), and even less regarding this fungus and crops in 
northwestern Mexico.

The effectiveness of the fungus Coniothyrium minitans against white mold 
has been demonstrated elsewhere (Huang and Hoes, 1980; McQuilk et al., 1995; 
Zeng et al., 2012b); the efficacy of preventive applications against S. sclerotiorum 
ascospore germination on bean and potato inflorescences should be determined 
in Sinaloa, as this phenological stage in both crops occurs during winter, when 
temperatures range from 5 to 25°C, favoring ascospore release by the pathogen and 
potential colonization of this structures by the antagonistic fungus (Clarkson et al., 
2003). However, C. minitans application on crop residues with the antagonistic on 
sclerotia may not be effective in reducing their viability since summer temperatures 
in Sinaloa reach up to 40°C at the soil surface, contrasting with other producing 
areas where the mycoparasite is applied to crop residues in early autumn with 
temperatures around 20 °C (Zeng et al., 2012b).

Regarding antagonistic bacteria, Bacillus cereus and B. subtilis were found 
to control sunflower stem rot caused by S. sclerotiorum (Zazzerinim, 1987). A 
similar effect was observed when B. subtilis BY-2 was applied as seed treatment 
or sprayed during flowering against the same disease in canola (Hu et al., 2014). 
These findings lead to the search for such bacteria in Sinaloa and the determination 
of their efficacy in controlling white mold in beans and potatoes.

To complement the white mold management scheme, studies on phenology 
of bean and potato varieties should be conducted to determine the heat unit 
accumulation necessary for flowering initiation, as when this phenological stage 
coincides with favorable environmental conditions for ascospore, release and 
infection of senescent flowers, which detach and fall onto plants, initiating the 
first disease symptoms. Additionally, the flowering period varies in both beans and 
potatoes, undoubtedly influencing the presence of substrate for ascospore infection 
in disease development. Compiling information on this topic will contribute to 
greater efficacy of fungicides and biocontrol agents in disease management.
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Conclusions

White mold of beans and potatoes is one of the most important diseases affecting 
these crops in Sinaloa. Although studies on the ecology of the causal agent and 
disease epidemiology have been conducted elsewhere, research on these topics 
in this region is incipient. In this regard, implementing a management system 
that integrates soil temperature and crop phenology has allowed efficient use of 
fungicides for disease control; however, new research avenues are opening up 
concerning bean and potato variety phenology, determining heat units required 
for the onset of flowering in commercial varieties, which is important for white 
mold epidemic progression. Additionally, the control scheme should investigate the 
biological effectiveness of endemic Trichoderma species in disease management 
from in vitro to semi-commercial plots experimentation and subsequent transfer to 
commercial fields.
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