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Background/Objective. Tobamovirus fructirugosum species (ToBRFV) is 
considered a worldwide quarantine pest that limits the production of Solanum 
lycopersicum and Capsicum annum, currently present in three countries of the 
American continent. The objective of this work was to deepen in the genetic 
variability of ToBRFV with respect to the different isolates, the physico-molecular 
and symptomatic characterization, the traditional and more current methods 
implemented for diagnosis, the range of virus reservoir hosts, and the epidemiology.

Results. ToBRFV was generated from a mutation resulting from genetic 
recombination with TMV, considered the main progenitor and ToMMV secondary 
progenitor. Phylogenetic analyses report the existence of five clades with respect to 
the genetic diversity of ToBRFV. The first primers for detection were designed in 
2015 that encode replication, movement and capsid proteins.  Serological methods 
can be used for preventive diagnosis, while molecular and NGS can confirm 
virus infection even at low concentrations in the plant. Sixteen weed families and 
host crops are reported from 47 countries. To achieve an effective strategy, it is 
necessary to reduce inoculum sources, develop compounds that inhibit mechanical 
transmission and develop tolerant genotypes.

Conclusion. ToBRFV is distributed nationally and represents a phytosanitary risk 
for Mexico; the exhaustive analysis of the study of diagnostic techniques, host 
range, dissemination, epidemiology and control strategies, contributes to the 
knowledge of ToBRFV.

Key-words: Diagnosis, epidemiology, ToBRFV, virus progression, genetic 
variability.
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Introduction

Tobamovirus research has gained importance across agronomic and scientific 
fields due to the viruses’ genetic diversity, transmission mechanisms, adaptability, 
host range evolution, new taxonomic classifications, and virus-plant interactions 
(Aiewsakun and Katzourakis, 2016). The genus Tobamovirus is believed to have 
emerged 140-120 million years ago, coinciding with the rise of angiosperms 
(Gibbs, 1999). Initially, these viruses existed in wild plants without plant-pathogen 
interactions, maintaining ecological homeostasis. However, the onset of agriculture 
transformed them into pathogens affecting solanaceous plants and other families 
(Lartey et al., 1996).

The Virgaviridae family encompasses 5 phytopathogenic virus genera, including 
the globally significant Tobamovirus, which comprises 37 species (Adams et al., 
2017; Dombrovsky et al., 2017a). Economically important tobamoviruses include: 
tobacco mosaic virus (TMV, Tobamovirus tabaci), tomato mosaic virus (ToMV, 
Tobamovirus tomatotessellati), tobacco mild green mosaic virus (TMGMV, 
Tobamovirus mititessellati), pepper mild mottle virus (PMMoV, Tobamovirus 
capsici), tomato mottle mosaic virus (ToMMV, Tobamovirus maculatessellati), 
and tomato brown rugose fruit virus (ToBRFV, Tobamovirus fructirugosum) 
(EPPO, 2023). TMV, the first identified tobamovirus (Ivanovsky, 1892), caused an 
epidemic in Dutch tobacco-producing regions before spreading worldwide (Shen et 
al., 2013). Later discoveries include yellow tailflower mild mottle virus (YTMMV, 
Tobamovirus anthocercis) in Australia, affecting ornamental solanaceous species 
(Wylie et al., 2014), and ToMV (Skotnicki et al., 1976) and ToMMV infecting 
tomato and pepper plants in Mexico (Li et al., 2013). While all tobamovirus species 
are aggressive emerging pathogens causing significant crop losses, the tomato brown 
rugose fruit virus stands out for its economic impact. Notably, it is considered the 
first plant virus to cause a global pandemic since SARS-CoV-2 (Salem et al., 2023).
 
Origin and Genetic Diversity of ToBRFV

Viral species of the genus Tobamovirus are significant pathogens in solanaceous 
crops, notable for the symptoms they induce and the need for specific serological 
methods for their identification. Nevertheless, some symptoms produced are similar 
among the causative species, such as TMV, ToMV, ToMMV, and ToBRFV (Alon et 
al., 2021). Some studies report that TMV, ToMV, and ToBRFV can produce mixed 
infections in tomato plants, complicating diagnosis (Jamous et al., 2022; Yan et al., 
2021a). ToBRFV was first identified in 2014 in the Ohad province of southern Israel. 
Subsequently, an outbreak in tomato nurseries in Jordan led to the isolation named 
“Tom1-jo”, and the new virus was designated tomato brown rugose fruit virus 
(Salem et al., 2016; Luria et al., 2017). Through phylogenetic analyses including 
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TMV, ToMV, ToMMV, and BPMV, Salem et al. (2016) validated ToBRFV as a new 
species within the genus Tobamovirus. Luria et al. (2017), using Koch’s postulates, 
transmission electron microscopy (TEM), partial host range determination, and 
antisera analysis to rule out cross-reactivity with other viruses, concluded that the 
ToBRFV-IL isolate showed high identity with the Jordanian isolate.

Current biogenomic studies on ToBRFV, following new outbreaks, have 
demonstrated genetic variability, with over 99% identity among different isolates 
(Chanda et al., 2020). Eichmeier et al. (2023) found 99.3 to 100% similarity among 
50 ToBRFV genomes, while Zhang et al. (2022) clearly differentiated ToBRFV 
isolates from TMV and ToMV in a study of 78 genomic sequences. Yan et al. 
(2021b) reported over 99.6% similarity among Tom1-Jo “KT383474.1”, ToBRFV 
IL, and ToBRFV MX isolates, suggesting a common ancestor for all ToBRFV 
isolates (Oladokun et al., 2019). Additionally, recombination of ToBRFV with other 
viral species has been identified, indicating ToMMV as a secondary progenitor and 
the TMV Ohio V strain as the main progenitor (Salem et al., 2016).

A phylogenetic analysis based on the ORF4/CP gene (Figure 1) grouped 
34 isolates from Turkey in the first clade, while 49 isolates were placed in the 

 

Figure 1. Phylogenetic analysis of ToBRFV sequences reported in NCBI. For the reconstruction of 
the phylogenetic tree, Molecular Evolutionary Genetics Analysis version 11 software was 
used with the Neighbor joining model and 10,000 replicates (Bootstrap). With a genetic 
distance of 0.02.
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second (Çelik et al., 2022). Two French isolates “MW284988.1, MW284987.1” 
were classified in the third clade, while 12 isolates from various regions including 
USA (MT002973.1), Mexico (TBRFV-MX-CP “MK319944.1, MW349655.1”), 
Netherlands “MW314116.1”, Italy “OK62464678.1”, Belgium (OM515231.1), and 
United Kingdom (TBRFV.21930919) formed the fifth group (Van de Vossenberg 
et al., 2020). Abrahamian et al. (2022) revealed a phylogenetic analysis of isolates 
from USA, Mexico, and Peru, reporting that most of these group in clade three, 
evidencing limited genetic diversity among isolates worldwide. Eichmeier et 
al. (2023) analyzed the complete virus genome, identifying the Czech ToBRFV 
isolate “OP413740.1” as belonging to an independent group within the fifth 
clade, distinguishing it from other European isolates. This overview underscores 
the complexity of ToBRFV genomics and the influence of multiple factors on its 
evolution and relationship with hosts.

Physical and Molecular Characteristics of ToBRFV

ToBRFV has rigid rod-shaped particles 300 nm long and 18 nm in diameter. 
The genome is a positive-sense single-stranded RNA (ssRNA+) of ~6,400 nt. 
It contains four distinct open reading frames (ORF1, 2, 3, and 4), encoding two 
replication-related protein complexes of 126 kDa (ORF1a) and 183 kDa (ORF1b), 
the movement protein (MP) of ~30 kDa (ORF2), and the coat protein (CP) of ~17.5 
kDa (ORF3), expressed through coterminal subgenomic RNAs (Eichmeier et al., 
2023). The 126 kDa protein can act as an RNA silencer, while the 30 kDa MP 
facilitates cell-to-cell virus translocation (Zhang et al., 2022). It has been noted that 
the ToBRFV control strategy focuses on the CP, which plays a crucial role in viral 
particle assembly and long-distance movement within the host plant (Ishikawa et 
al., 2022).

Description of Symptoms 

ToBRFV, a distinctive tobamovirus, induces a wide array of symptoms in its 
hosts. The severity and type of symptoms vary based on the host plant species, 
season, temperature, growth conditions (greenhouse or open field), and plant 
age at infection (Caruso et al., 2022). These symptoms, both direct and indirect, 
significantly diminish fruit quality and commercial value, leading to substantial 
crop losses (Menzel et al., 2019). Symptom expression varies with crop type and 
environmental factors (Figure 2A and C). Tomato plants exhibit systemic symptoms, 
while species like Nicotiana tabacum, N. glutinosa, N. clevelandii, N. benthamiana, 
and Chenopodium amaranticolor primarily display localized symptoms (Chanda 
et al., 2021; Vásquez-Gutiérrez et al., 2024). Although tobamoviruses generally 
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cause similar symptoms such as mosaics and yellowing, ToBRFV stands out for its 
particularly severe syndrome. Foliar symptoms include mosaics, blistering, curling, 
deformations (Figure 2D), reduced leaf size, and stunted growth. Fruits exhibit 
deformation, brown spots, mottling, irregular ripening (Figure 2B), yellow spots, 
and both external and internal necrosis (González-Concha et al., 2023; Jewehan 
et al., 2022a; Vásquez-Gutiérrez et al., 2023a; Zhang et al., 2022). This symptom 
diversity highlights the critical need for effective identification and management of 
ToBRFV to mitigate its impact on agricultural productivity.

Diagnostic methods 

Diagnostic methods begin with the identification of plant symptoms. The 
observation of dark mosaics, deformation and narrowing of leaves in young apical 
shoots, and brown rugosity on fruits confirms the presence of ToBRFV (Alfaro-
Fernández et al., 2021). Currently, there are various alternatives for ToBRFV 

 
Figure 2. Symptoms manifested in tomato plants by ToBRFV grown in greenhouse. A) Tomato 

plants at 180 days after sowing showing high incidence of ToBRFV; B) Irregularities in 
fruit ripening; C) Plants in a state of collapse due to severe ToBRFV infection; D) Presence 
of mosaic patterns, mottling, and blistering on leaves.
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identification and detection, which can be classified into different types: differential 
plant diagnosis, transmission electron microscopy (TEM), serological methods, 
reactive strips, and molecular techniques (González-Garza, 2017).

Diagnosis using Differential Plants. Tobamoviruses exhibit distinct symptomatic 
patterns that distinguish them from other genera (Roistacher, 1991). Initially, 
ToBRFV was thought to naturally infect only pepper and tomato (Luria et al., 
2017). However, recent studies have expanded our understanding of its host range. 
Cultrona et al. (2024) demonstrated that ToBRFV can naturally infect Convolvulus 
arvensis and Polycarpon tetraphyllum, which serve as reservoirs. Furthermore, 
Vásquez-Gutiérrez et al. (2024) identified and confirmed through ELISA that 
ToBRFV can naturally infect 21 different host species.

ToBRFV’s host range encompasses over 40 species across four families: 
Amaranthaceae, Apocynaceae, Asteraceae, and Solanaceae (Table 1). Its host 
range similarity to ToMV reflects their close phylogenetic relationship (Chanda 
et al., 2020). Differential plants enhance ToBRFV diagnosis by leveraging the 
hypersensitive response (HR), though mixed infections with other tobamoviruses 
can complicate interpretation (González et al., 2017). When mechanically 
inoculated, experimental plants exhibit an HR that isolates ToBRFV particles, 
limiting systemic spread (Fidan et al., 2021).

Experimental host range studies for ToBRFV primarily focus on species from 
Chenopodiaceae, Amaranthaceae, and Solanaceae families. Notably, it does not 

Table 1. Hypersensitivity response in the range of hosts susceptible to ToBRFV
 

Host/Observed symptomatology References

Amaranthaceae
Gomphrena globosa3, 18, Amaranthus viridis14 Salem et al., 2022

Asteraceae
Emilia sonchifolia9, 10, 21, Glebionis coronaria3, 20, Lactuca serriola4, 
Verbesina encioloides14, Bidens pilosa14, Helianthus annus14, 
Sonchus oleraceus14, Titonia tubaeformis14 

Sabra et al., 2022; Salem et al., 2022; 
Matzrafi et al., 2023; Luria et al., 2017; 
Chanda et al., 2021a; Vásquez-Gutiérrez 
et al., 2024

Labiatae
Marrubium vulgare13, 21 Vásquez-Gutiérrez et al., 2024

Solanaceae
Salanum lycopersicum3, 11, 23, S. eleagnifolium1, S. rostratum 4, 20, 21, 22, S. melongena1, 
S. arcanum8, 19, 20, 22, 24, S. Cheesmaniae7, 16, 19, 22, S. habrochaites3, 7, 16, S. nigrum3, 4, 12, 18, 20, 
S. pennellii3, 8, 22, S. peruvianum3, 8, 16, 22, S. pimpinellifolium3, 8, 16, 22, S. tuberosum1, 7, 21, 
S. sitiens3, Nicotiana glutinosa5, 10, N. tabacum Samsun 3, 5, 10, 20, N. occidentalis 
subsp. Hesperis5, 15, N. benthamiana2, 6, 5, 15, 21, 22, N. clevelandii 3, 10, 21 N. sylvestris3, 10, 
N. rustica2, 12, 14, 28, N. longiflora12, N. glauca14, Petunia hibrida3, Physalis 
angulata3, P. pubescens5, 7, Datura stramonium10, 14, Capsicum annum3, 5, 8, 13, 21

Matzrafi et al., 2023; Salem et al., 2022; 
Yan et al., 2021a; Sabra et al., 2022; 
Jewehan et al., 2022b; Chanda et al., 
2021a; Zhang et al., 2022; Vásquez-
Gutiérrez et al., 2024; Luria et al., 2017; 
Ortiz-Martínez et al., 2021
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Chenopodiaceae

Chenopodium berlandieri12, 18, Ch. amaranticolor14, Ch. album8, 12, 17 
Ch. quinoa10, 12, 17, 18, Ch. glaucum12, Ch. Murale14 

Chanda et al., 2021a; Luria et al., 2017; 
Sabra et al., 2022; Sabra et al., 2022; 
Salem et al., 2016; Sabra et al., 2022; 
Vásquez-Gutiérrez et al., 2024

Convolvuláceae
Ipomoea purpurea4,7 Vásquez-Gutiérrez et al., 2024

Apocynaceae
Catharanthus roseus1 Chanda et al., 2021a
Malvaceae
Malva parviflora21, Malva neglecta14, 
Malvastrum coromandelianum14

Salem et al., 2022; Vásquez-Gutiérrez et 
al., 2024

Nyctaginaceae
Mirabilis jalapa4, 21, 7, 24

Vásquez-Gutiérrez et al., 2024

Oxalidaceae
Oxalis latifolia14

Resedaceae
Reseda luteola14

Araliaceae
Hedera hélix14

Plantaginaceae
Plantago lanceolata14

Polygonaceae
Polygonum convolvulus14

Ranunculaceae
Clematis drummondii4, 7. 21, 24

Euphorbiaceae
Ricinus comunis14

¹asymptomatic; ²plant death; ³mosaic; ⁴mosaic, ⁵necrosis, ⁶blistering, ⁷Leaf distortion, ⁸deformation, ⁹local black spots, ¹¹plant 
stunting ¹²Necrotic local lesions, ¹³necrotic spots, ¹⁴chlorotic local lesions, ¹⁵Plant death, ¹⁶blister formation, ¹⁷chlorosis, ¹⁸necrotic 
ring spot, ¹⁹leaf narrowing, ²⁰mottling, ²¹yellowing, ²²leaf curling, ²³stunting, ²⁴leaf deformation.

Table 1. Continue.

Host/Observed symptomatology References

infect species from Brassicaceae, Cucurbitaceae, and Verbenaceae (Yan et al., 
2021a; Chanda et al., 2021a). While most indicator plants display both systemic 
and local symptoms, some species like Solanum tuberosum and S. melongena 
were initially reported as asymptomatic (Yan et al., 2021b). However, Vásquez-
Gutiérrez et al. (2024) recently observed that S. tuberosum plants in contact with 
ToBRFV-infected tomatoes developed visual symptoms including yellowing, leaf 
deformation, and size reduction, subsequently confirmed by ELISA.
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Alternative hosts. ToBRFV has proven to be a pathogen with a wide range of 
potential hosts, including crops and various weeds (Chanda 2021a; Zhang et al., 
2022; Matzrafi et al. 2023) (Table 1). Weeds play a significant role in the spread 
of ToBRFV inoculum (Matzarafi et al., 2023), highlighting the importance of 
integrated management that includes weed control to limit virus propagation.

Microscopic diagnosis. Microscopic methods are crucial for diagnosis but can be 
imprecise due to variability in viral particle size among species (Luria et al., 2017). 
Optical microscopy, particularly when combined with fluorescence techniques, 
supports tobamovirus diagnosis through viral inclusions in plant tissues (Pepperkok 
and Ellenberg, 2006). Virus classification using inclusions is done by genera, 
as most tobamovirus species form hexagonal and needle-shaped inclusions like 
tobacco mosaic virus (Khamphirapaeng et al., 2017), while potato virus Y (species 
Potyvirus yituberosi) produces amorphous spherical bodies (Guo et al., 2022). 
ToBRFV inclusions were previously undescribed; recently, Vásquez-Gutiérrez et 
al. (2024) reported X-bodies, rounded and stacked plates as infection responses to 
ToBRFV in tomato and tobacco tissues. Transmission electron microscopy (TEM) 
has contributed to ToBRFV’s morphological identification since its first sighting 
(Luria et al., 2017; Zhang et al., 2022) and is considered a classic method for 
visualizing plant tissues (Home et al., 2018). TEM diagnosis aids in characterizing 
viral particles based on morphological features (Kitajima et al., 2004). However, 
TEM can be imprecise as viral particles vary in size, complicating identification 
(Luria et al., 2017). Electron microscopy also detects cellular alterations during 
ToBRFV infections related to viral inclusions. Despite being recently identified, 
TEM proved valuable for ToBRFV’s viral characterization and particle observation.

Luria et al. (2017), Cambrón-Crisantos et al. (2019), Eichmeier et al. (2023), 
Fidan et al. (2021), Levitzky et al. (2019), and Mahillon et al. (2022) sampled 
infected tomato leaflets and fruits cv. Mose and Ikram with unusual symptoms, 
then purified the unknown virus following Cohen et al. (2000). They found viral 
particles averaging 265.6±56.2nm long and 19±1.41nm in diameter, noting that 
particles differ based on sample origin and can be short or elongated rods.

Serological detection of ToBRFV. Serological detection of ToBRFV employs 
techniques like Double Antibody Sandwich Enzyme-Linked Immunosorbent 
Assay (DAS-ELISA), in situ immunofluorescence, and Western blot. Previously, 
these methods lacked specificity in distinguishing ToBRFV from related species 
like TMV and ToMV, possibly due to cross-reactivity between antibodies and 
coat proteins (CP) of different tobamoviruses. Luria et al. (2017) serologically 
characterized ToBRFV, generating antibodies for virus CP detection using DAS-
ELISA (1:12,000 dilution). Their analysis showed slight cross-reactivity with TMV 
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and PMMoV. Field diagnosis typically uses symptomatic leaflets, increasing DAS-
ELISA accuracy.

Yan et al. (2021b) developed monoclonal antibodies specific to ToBRFV CP, 
improving diagnostic sensitivity and specificity. Eads et al. (2023) validated an 
Agdia® DAS-ELISA with high analytical sensitivity (64 to 320 pg mL-1) and 
specificity for ToBRFV, noting cross-reactivity with TMV, ToMV, and ToMMV 
at higher concentrations. Luria et al. (2017) implemented Western blot diagnosis 
using ToBRFV-specific polyclonal antibodies, analyzing CP band intensity via 
t-student test.

In situ immunofluorescence, enhanced by specific fluorophores for laser scanning 
microscopy, enables direct ToBRFV detection in infected samples, differentiating 
between tobamoviruses (Klap et al., 2020). This technique often uses Alexa Fluor 
594®, a bright, stable red-spectrum fluorophore (Salem et al., 2022). Another 
variant involves staining seeds, plant tissues, and roots for fluorescence in situ 
hybridization and microscopic detection (Ragasová et al., 2022).

These serological methods contribute to accurate diagnosis and characterization 
of ToBRFV’s physicochemical effects on infected hosts, offering valuable tools for 
virus management and control.

Diagnosis with test strips. The quest for rapid virus diagnosis in field conditions 
has gained importance (Fillmer et al., 2015; Li et al., 2019). Following ToBRFV’s 
emergence (Salem et al., 2016; Luria et al., 2017), rapid immunochromatographic 
assays using test strips for plant virus detection have become significant due to 
their sensitivity and field applicability (Byzova et al., 2009). Agdia® test strips for 
ToBRFV specifically detect isolates from Israel, the Netherlands, Italy, Germany, 
and Mexico, validating field monitoring results (Levitzky et al., 2019; Eldan et 
al., 2022). Despite a ToBRFV detection limit of  200 ng mL-1, cross-reactions 
with related viruses occur. These strips may cross-react with TMV, ToMV, and 
ToMMV at low concentrations, necessitating validation through molecular assays 
(Wilstermann and Ziebell, 2019). Eads et al. (2023) recently determined a 1:259,000 
dilution limit for ToBRFV detection in infected tissue with 64-320 pg mL-1 of 
purified virus. Their validation of Agdia® strips revealed slight cross-reactivity 
with TMV and ToMV at a 200 ng mL-1 detection limit for purified virus. However, 
the strips showed no cross-reaction with other ToBRFV-related species. Notably, all 
384 ToBRFV-positive samples tested positive using these strips (Figure 3 A and B). 

Molecular techniques for ToBRFV detection. Early detection through molecular 
diagnosis of ToBRFV presents an opportunity to reduce the risk of virus entry and 
spread (Luigi et al., 2022). Consequently, various protocols based on nucleic acid 
amplification have been developed, including: reverse transcription polymerase 
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chain reaction (RT-PCR), quantitative reverse transcription PCR (RT-qPCR), and 
digital PCR (ddPCR) for detection in leaflets, fruits, and seeds (Panno et al., 2019b; 
Rodríguez et al., 2019; Chanda et al., 2021b; Yan et al., 2021b; Menzel & Winter, 
2021). The development of these molecular techniques has gained relevance in 
expanding real-time virus diagnostic strategies. Due to result variation and the 
efficacy of existing molecular methods, new techniques have been continuously 
developed to allow specific detection of genes in ToBRFV viral proteins. These 
primers, described in Table 2, are used for preventive diagnosis of ToBRFV, 
reducing the risk of entry into countries where the virus is absent.

Vargas-Hernández et al. (2022) implemented a digital droplet polymerase chain 
reaction (ddPCR) assay that enables the detection of the virus using recombinant 
plasmids encoding a specific gene of the virus coat. This is the first report of 
ToBRFV detection in tomato seeds using ddPCR. However, the technique has 
not been widely implemented for field application. Another recent method is the 
application of AmplifyRP XRT, a technique based on the molecular principle, which 
utilizes recombinase polymerase amplification. This technique is designed to be a 
hybrid tool for field and/or laboratory detection. Therefore, it is considered a highly 
sensitive and precise technique, with an analytical sensitivity of 16 fg µL-1 and 
an analytical specificity that encompasses all ToBRFV isolates, without producing 
cross-reactions (Eads et al., 2023). Detection based on loop-mediated isothermal 
amplification (LAMP) offers an efficient and robust alternative for ToBRFV 

 
Figure 3. Rapid detection procedure for ToBRFV using Agdia® immunological strips. A) Selection 

of symptomatic tissue (young leaves); B) Macerated sample and positive reaction to 
ToBRFV, showing the control line and the test line (both in red color). 
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Table 2. Primers Reported for the International Detection of  ToBRFV.

Detection 
frabric Initiators Nucleotide sequences 5´ to 3´ White 

region
Amplicon 

size Authors

Leaflets and 
fruits

ToBRFV-F
ToBRFV-R

AACCAGAGTCTTCCTATACTCGGAA
CTCWCCATCTCTTAATAATCTCCT RdRp1 475 bp Rodríguez et al., 

2019

TBRFV-F-5722
TBRFV-R-6179

CACAATCGCAACTCCATCGC
CAGAGGACCATTGTAAACCGG CP1 458 bp Panno et al., 

2019a

Leaflets AB5520F
AB5598R

GTAAGGCTTGCAAAATTTCGTTCG
CTTTGGTTTTTGTCTGGTTTTCGG CP1 101 bp Panno et al., 

2019b

Leaflets and 
fruits

ToBRFV-F-Alk
ToBRFV-R-Alk

AATGTCCATGTTTGTTACGCC
CGAATGTGATTTAAAACTGTGAAT RdRp1 560 bp Alkowni et al., 

2019

Leaflets and 
fruits

ToBRFV-F
ToBRFV-R

GAAGTCCCGATGTCTGTAAGG
GTGCCTACGGATGTGTATGA CP1 842 bp Ling et al., 2019

Leaflets, 
fruits and 

seeds

ToBRFVqs1
ToBRFVp1

ToBRFVqas2

CAATCAGAGCACATTTGAAAGTGCA
FAM-ACAATGGTCCTCTGCACCTG-BHQ1

CAGACACAATCTGTTATTTAAGCATC
CP2 96 bp Menzel and 

Winter, 2021

Leaflets CP FOR
CP REV

AGAACAACCGTTCAACGGCAATTTA
CTCAAGATGCAGGTGCAGAGGACCATTGT CP4 359 bp Magaña-Álvarez 

et al., 2021

Leaflets, 
fruits and 

seeds

CaTa28-FW
CaTa28-Pr
CaTa28-Rv

GGTGGTGTCAGTGTCTGTTT
FAM-AGAGAATGGAGAGAGCGGACGAGG 

-BHQ1
GCGTCCTTGGTAGTGATGTT

MP3 139 bp
International 

Seed Federation, 
2020

CSP13251Fw
CSP1325 Pr

CSP1Rv

CATTTGAAAGTGCATCCGGTTT
HEX-ATGGTCCTCTGCACCTGCATCTTGAGA 

-BHQ1
GTACCACGTGTGTTTGCAGACA

CP3 100 bp
International 

Seed Federation, 
2020

Leaflets and 
seeds

AB-620
AB-621

CAGATGTGTCGTTGGTCAGAT
CATCACTACGGTGTAATACTTC

MP1 y 
MP2, ORF5 144 bp Bernabé-Orts et 

al., 2022*

Leaflets ToBRFV-R1
ToBRFV-P1

GCCCATGGAACTATCAGAAGAA
TTCCGGTCTTCGAACGAAAT MP3 92 bp Chanda et al., 

2021a*

Leaflets, 
fruits and 

seeds

F ToBRFV_F3
ABRFV_B3

TTGGAGTCTTAGATGTTGCG
GGACACCGTCAACTAGGA

MP6 279 bp Sarkes et al., 
2020; Rizzo et 

al., 2021
F-3666
R-4718

ATGGTACGAACGGCGGCAG
CAATCCTTGATGTGTTTAGCAC RdRp1 1052 bp Luria et al., 2017

Leaflets ToBRFV-1534-F
ToBRFV-3733-R

AGATTTCCCTGGCTTTTGGA
ATCATCGCCACCAAATTTTC RdRp1 1052 bp Yan et al., 2019
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diagnosis. Sarkes et al. (2020) describe the principle of this technique, which is 
based on the specificity of a set of primers; F3: TTGCAAGTCTTAGATGCG, 
B3: GGACACCGTCAACTAGG with a size of 279 bp. FIP(F1c+F2): 
CCTTCTCCAACTGTCGCAAGTCACATGCTAGGAAGTACCAC, BIP 
(B1c+B2) CCGTGAGTTCTGAGTCAATGGTTGAGGCTCACCACCATCTC 
TTAA and loopF; CTCCATGCTCATCATACCCAA. LAMP assays are performed 

Leaflets

ToBRFV MP1-
59-F1

ToBRFV MP1-
59-R

GAAGTTTGTTTATAGATGGCTCTTGTTA-
AGGGTAAA

GTATCCACTATCGATGAGTTTTACACCTT-
TAAGTAAATTGAC

GTCAATTTACTTAAAGGTGTAAAACT-
CATCGATAGTGGATAC

MP1 15 bp

Yan et al., 
2021aA

ToBRFV 
MP60-126-F

ToBRFV 
MP60-126-R

AAAGGAGTTAAGCTTATTGATGGTGGC-
TATGTACAT

TGCGTCCTGGGTGGTGATGTTGTAATTTG-
GAACGACT

MP1 15 bp

ToBRFV 
MP127-186-F

ToBRFV 
MP127-186-R

GACGGAGGTCCCATGACTACCAAGGACG-
CAGAAA

TTCTTCTGTAAGTTCCATGGGCCCTCCATC
MP1 15 bp

ToBRFV 
MP187-266-
FToBRFV 

MP187-266-R1

GACGGAGGTCCCATGGAACTAT-
CAGAAGAAGTTGTTGATG

TTGTGTAAGATCTATTTAATACGAATCT-
GAATCGGC

MP1 15 bp

ToBRFV-CP-
detection-

FToBRFV-CP-
detection-R

ATGTCTTACACAATCGCAACTC
TCAAGATGCAGGTGCAGAG CP1 1019 bp

q-ToBRFV 
CP-Fq-ToBRFV 

CP-R

AAATCAGGCGAACCCG
GCAGAGGACCATTGTAAACC CP1 173 bp

q-ToBRFV 
RdRp-Fq-
ToBRFV 
RdRp-R

CAATACCTTGGTCAACGAT
TTGGGCATACAGCAGTG RdRp1 329 bp

Technique: ¹RT-PCR endpoint; ²RT-qPCR; ³RT-qPCR multiplex, ⁴SEqPCR; ⁵CRISPR/Cas; ⁶LAMP; ᴬPrimers used in the study 
reported by the corresponding author; *real-time monitoring; RdRp: RNA-dependent RNA polymerase; MP: movement protein.

Table 2. Continue.

Detection 
frabric Initiators Nucleotide sequences 5´ to 3´ White 

region
Amplicon 

size Authors
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in a WarmStart LAMP colorimetric master mix (NEB Canada). The reaction 
program consists of a single step, where tubes are incubated at 65°C for 30 min, after 
which the reactions are visualized and the results are recorded photographically. 
Positive results confirm the presence of the virus when there is a color change in 
the reaction mixture from pink to yellow. These results indicate that LAMP can 
detect six molecules in a 25 μL reaction, being more specific than RT-PCR. On the 
other hand, LAMP-PCR has been used in combination with Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR) technology for the specific 
detection of ToBRFV in the field (Rizzo et al., 2022).

Next-generation sequencing (NGS) has gained relevance with the emergence 
of new omic technologies. NGS remains dominant in plant virus detection due 
to its high throughput and low cost (Dumschott et al., 2020). The importance 
lies in the ability to generate enormous data and its rapid processing (Mehetre 
et al., 2016). NGS shares processes that are common for plant virus detection, 
such as the extraction of nucleic acids (DNA/RNA) from infected samples, the 
subsequent fragmentation of the nucleic acid for library preparation, and finally, 
the development of several synthetic primers in the fragmented DNA for the 
consecutive development of different sequencing chemistries and platforms for 
ToBRFV analysis (Luria et al., 2017; Riesenfeld et al., 2004). NGS coupled with 
MiSeq Illumina, known as second-generation technology, allows the detection 
of ToBRFV at low concentrations in the plant, even in asymptomatic infections, 
through metagenomic analysis (Mehetre et al., 2021). The technique could be used 
for the mass monitoring of emerging viruses, limiting their spread and impact on 
economically important crops. 

Spread of the virus

The tomato brown rugose fruit virus was first identified in Israel in 2014 in 
tomato plantations under shade mesh, according to Luria et al. (2017). However, 
it was not until 2015 that the first report of its presence in tomato greenhouses 
in Jordan was made, where atypical symptoms were observed compared with 
other viruses; on leaves, mosaics, blistering, and on fruits, yellow spots to brown 
rugosity (Salem et al., 2016). Molecular analyses confirmed the presence of a new 
tobamovirus in tomato plants, which was identified as tomato brown rugose fruit 
virus (Salem et al., 2016; Luria et al., 2017)*. The appearance and severity of 
symptoms in fruits affected by ToBRFV constituted a significant obstacle to their 
commercialization, and the absence of adequate diagnostic methods along with 
epidemiological plans delayed the implementation of quarantine control measures 
(Zhang et al., 2023). After its discovery, the virus spread rapidly worldwide, mainly 
through contaminated seeds, as Israel and Jordan are prominent seed exporters. 
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This marked the beginning of the global expansion of the virus (Van de Vossenberg 
et al., 2020). Currently, ToBRFV is present on five continents: America, Asia, 
Africa, Europe, and Oceania, covering 47 countries where it has been reported 
in *Solanum lycopersicum *and Capsicum annum crops (Figure 4). Although its 
presence has not been officially confirmed in Oceania, it has been indicated that 
seeds from Australia were contaminated with ToBRFV, suggesting its existence in 
the region (EPPO, 2023; Zhang et al., 2022).

 

Figure 4. ToBRFV records in producing regions of the World, indicating its presence in 47 countries distributed across the 
continents of America, Asia, Africa, Europe, and Oceania. Affected countries are marked with an arrow and highlighted 
according to the first host found.

With the importation of seeds to Mexico, in 2017, symptoms of a disease that 
spread mechanically in tomato greenhouses were evidenced. In July 2018, the 
first case of ToBRFV was registered in Ensenada, Baja California. The analyzed 
samples showed 100% identity with the 1052 bp region of the RdRP gene of 
the ToBRFV isolates identified in Israel and Jordan, according to the sequences 
deposited in GenBank (KX619418 and KT383474.1) (Camacho-Beltrán et al., 
2019). In September 2018, the virus was also detected in tomato and chili pepper 
greenhouses in the Yurécuaro region of Michoacán, confirmed by RT-PCR with 
a 100% identity to the Israeli strains (Cambrón-Crisantos et al., 2019). Likewise, 
Ling et al. (2019) in September of the same year, reported the presence of ToBRFV 
in a greenhouse with tomato plants from Baja California. This evidence shows that 
the virus spread rapidly through the tomato and pepper production areas in Mexico, 
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currently being widely distributed throughout the national territory, according to 
official reports (Figure 5). 

 

Figure 5. Records of ToBRFV in the Mexican Republic where tomato brown rugose fruit virus was detected. 
The numbers 1, 2, 3, etc., represent the chronological sequence of virus detections, starting with the 
first confirmed case in Mexico.

Epidemiology

The dynamics of the spread and evolution of the disease caused by ToBRFV in 
tomato crops are articulated through different epidemiological phases, reflecting 
an inherent complexity in the behavior of the virus. The polycyclic ToBRFV 
disease has a constant production of inoculum mediated by the processes of virus 
replication within the host cells (Smith and Dambrovsky, 2019), as well as the 
rapid dispersal and subsequent infection of new individuals (Madden et al., 2007). 
The epidemiological development stages of ToBRFV can be described (Figure 6) 
during infection and disease progression in tomato plants. It begins with an initial 
phase (Figure 6A), where the infection rate is relatively low, which is attributed 
to the pathogen’s acclimatization phase to its new environment and host. The 
initial phase is usually triggered by the germination of contaminated seeds; the 
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hypocotyl activates the replication of the virus, which was in a latent state in the 
cotyledons (Dombrovsky et al., 2017b). As the disease progresses, an exponential 
growth phase is observed (Figure 6B), during which the transmission speed and 
viral replication intensify drastically, in direct correlation with the observed 
incidence. Given the high mechanical transmission capacity of ToBRFV and the 
start of cultural practices in the crop, the virus spreads rapidly (Levitzky et al., 
2019). During this period, the relative rate of the disease increases in such a way 
that it produces a maximum transmission point (Figure 6C), driven by secondary 
infections in the set of evaluated plants. Crop management practices, together with 
insufficient disinfection measures, create a scenario where the incidence can reach 
100% (Jeger et al., 2018; Klein et al., 2023). At the end of this phase, the epidemic 
enters a deceleration or stationary phase (Figure 6D), indicating the moment when 
the disease has infected the maximum possible number of individuals within the 
plant population. Unlike other members of the Tobamovirus genus, ToBRFV is 
capable of causing particularly severe infections (Temple et al., 2023), which 
can be fatal to the plant, especially in the presence of mixed infections with other 
tobamoviruses. (Vásquez-Gutiérrez et al., 2023b; Abou et al., 2023).

The symptoms caused by ToBRFV in tomato are influenced by biotic and/
or abiotic factors, such as precipitation, humidity, and temperature, which play 
a crucial role in the incidence and severity of the virus (Nolasco et al., 2023). 
González-Concha et al. (2023) highlight that the symptomatology in tomato 

Figure 6. Evolution of a ToBRFV epidemic in tomato crops (Hypothetical design). A) Start of 
infection; B) Growth phase or exponential stage; C) Peak infection point; D) Deceleration 
phase or stationary phase. 
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plants grown in open fields differs significantly from those grown in greenhouses, 
with high temperatures exacerbating both the incidence and severity of the 
virus (Salem et al., 2016). Menzel et al. (2019) reported the appearance of dark 
green protuberances on tomato leaflets under high temperature conditions, while 
Oladokun et al. (2019) identified necrotic lesions on leaflet peduncles and stem 
necrosis. Panno et al. (2019a) observed calyx and leaflet petiole necrosis in tomato. 
Although tobamoviruses generally do not act as necrotrophic parasites with their 
hosts, ToBRFV constitutes a notable exception to this trend (Caruso et al., 2022). 
Under favorable conditions, this virus has the ability to cause the collapse of its 
hosts, demonstrating a distinct and more severe pathogenic impact compared to 
other members of its genus (Dombrosky and Smith, 2017).

Management strategies

In the absence of specific methods for the control and management of ToBRFV, 
various cultural strategies have been implemented that partially reduce the spread 
of the virus in the work area. These strategies include the use of virus-free seeds, 
avoiding the reuse of substrates (García-Estrada et al., 2024), or, failing that, 
applying thermal inactivation and disinfection treatments for ToBRFV (Michael et 
al., 2022; Samarah et al., 2021; Ling et al., 2022), removing symptomatic plants after 
transplanting, keeping the work area free of weeds that can act as virus reservoirs, 
and considering crop rotation specifically with legumes. In addition, it is crucial to 
keep workers located in specific areas (Ehlers et al., 2022b), properly clean workers’ 
clothing and shoes, and disinfect tools before and after entering the production area 
(Ehlers et al., 2022a). These are some mitigation strategies that could contribute to 
good management of ToBRFV. Although there are currently no chemical products 
specifically effective against ToBRFV in host plants, disinfectant products have 
been investigated to reduce its incidence and severity in the field (Iobbi et al., 
2022; Nourinejhad-Zarghani et al., 2023; Pablo et al., 2022). For example, the 
use of hydrogen peroxide (HP) in polyvinyl alcohol (PVA)/polyvinylpyrrolidone 
(PVP) hydrogel for controlled release in field applications has been reported. The 
release rate of HP hydrogel through direct and indirect contact with soil (gas phase) 
has shown low phytotoxicity and high efficacy against ToBRFV in tomato and 
tobacco plants (Eldan et al., 2022; Liao et al., 2013). The use of resistance inducers 
applied directly to the crop to counteract the damage caused by ToBRFV is still 
limited due to the recent emergence of the virus. However, recent studies have 
evaluated (Ortiz-Martínez and Ochoa-Martínez, 2023) the effect of 14 elicitors 
and biostimulants on agronomic parameters of morphology, yield, and fruit quality 
in tomato plants infected with ToBRFV. They determined that Virablock® 3G50, 
Optifert®, Silicant®, and Haifa ProtekTM improved the evaluated agronomic 
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parameters, while Haifa ProtekTM induced a larger root system. ToBRFV is 
considered the first tobamovirus capable of breaking the resistance to the Tm-2, 
Tm-1, and Tm-22 genes that confer resistance to TMV, ToMV, and ToMMV in 
solanaceous plants (Hak and Spiegelman, 2021). Therefore, the selection of wild 
materials for the application of genetic improvement with resistance to ToBRFV 
has provided favorable results in research, as indicated by Kabas et al. (2022), 
who evaluated tomato materials including 10 wild species and 11 interspecific F1 
hybrids derived from Solanum habrochaites and S. pennellii. These were tested 
with ToBRFV isolates using the biological test method. In the end, they found that 
S. pimpinellifolium (LA1651), S. penellii (LA0716), and S. chilense (LA4117A, 
LA2747) could be tolerant to ToBRFV with a severity index (SI) lower than 19.6, 
28.3, 35.0, and 35.2%, respectively. Additionally, there are reports indicating that 
ToBRFV is capable of systemically infecting pepper plants carrying L1 or L2 genes 
resistant to ToMV (Eldan et al., 2022), although in pepper with L2 and L4 genes, 
ToBRFV produces local lesions as resistance to the virus (Fidan, 2021). Pelletier 
and Moffett (2022) indicated that Nicotiana tabacum cultivar BY-2 conferred 
resistance to ToBRFV through the recognition of the viral P50 and CP fragments, 
respectively; this could have been achieved by the resistance mediated by the N 
and N’ genes by not inducing a hypersensitivity response (HR) in N. tabacum. This 
highlights the limited availability of genetic materials, both wild and commercial, 
that offer resistance to ToBRFV, a crucial aspect for mitigating losses in tomato 
and pepper crops (Avni et al., 2021; García-Estrada et al., 2022). It is important 
to mention that, although there are genotypes in the market considered resistant, 
they do not always counteract the infection by ToBRFV. In other words, genotypes 
established at normal temperatures (20 to 28 °C) may tolerate the pathogen, but at 
extreme temperatures (30 to 48 °C), they may manifest as susceptible. Therefore, 
it is necessary to consider the validation of resistance to ToBRFV before its 
establishment in production zones (González-Concha et al., 2023; Nolasco et al., 
2023).

Legal control and regulations

The phytosanitary problem of the presence of ToBRFV prompted the United 
States in 2018, through the California Department of Food and Agriculture (CDFA) 
and the Department of Agriculture (USDA), to assess the risks that the presence 
of ToBRFV would entail. With this, they established restrictions on imports of 
vegetative material and tomato and pepper seeds that could allow the dispersal of 
the inoculum. Despite these measures, ToBRFV was detected for the first time in 
tomato greenhouses in Southern California, USA (Ling et al., 2019). In Mexico, 
after the detection of the virus, the National Epidemiological Surveillance System 
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(SINAVEF) implemented measures that classified the pest status as “Actionable 
and eradicable transient pest (AETP),” given that there were no reports by the 
International Standards for Phytosanitary Measures (ISPMs) (FAO, 2023) to 
prevent its spread. These actions included: diagnosis, elimination of plantations 
with the presence of ToBRFV, and destruction of contaminated propagative 
material (seeds). However, the results were not satisfactory, so in that same year, 
the status changed to “Quarantine pest, under official control (QPOC).” Regarding 
the appearance of the virus in our country, the following hypothesis has been 
proposed: The inoculum came from a block of seeds imported from Jordan to Israel 
(Luria et al., 2017), which was distributed throughout the Mexican republic, being 
detected for the first time in Baja California and later in Michoacán. From 2019 to 
date, the virus has been considered a “Regulated non-quarantine pest (RNQP),” so 
regulations for seeds and plant material have continued to be implemented to reduce 
its impact on Mexican production. In 2019, the first circular was issued aimed 
at seeds, seedlings, and fresh fruits of tomatoes and peppers for export purposes 
and the absence of ToBRFV (SENASICA, 2023). Finally, the European Union 
issued an Implementing Decision notification (EU) 2019/1615, which establishes 
emergency measures to prevent the introduction and spread of ToBRFV in the EU. 
For this reason, in 2021, Circular No. 040 was published for the export of tomato 
and pepper seeds destined for the EU. These guidelines continue to be respected 
today for the import and export of seeds to the USA, EU, and Mexico.

Conclusions

The lack of knowledge about ToBRFV following its detection resulted in rapid 
spread worldwide, as it is a pathogen that can be transmitted through seeds and 
plant debris, facilitating greater dissemination. Currently, five clades are reported 
based on the existing genetic diversity. ToBRFV infects 16 families of weeds and 
host crops distributed across 47 countries, with Solanum lycopersicum being the 
most economically significant. Genetic resistance is a promising alternative for 
developing resistant genotypes; however, studies in this area are currently limited. 
The current status of ToBRFV in Mexico and its presence in tomato-producing 
regions reveals that the fundamental problem lies not only in contaminated seeds but 
also in the phytosanitary measures implemented for detecting emerging diseases. 
This review emphasizes the need for a comprehensive analysis of ToBRFV, from 
its genetic diversity to specific management strategies. The absence of corrective 
measures for viral diseases could lead to the recurrence of similar scenarios, 
underscoring the importance of conducting further research focused on emerging 
viral diseases, such as ToBRFV. 
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