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ABSTRACT 
 

Background/Objective. In a strawberry crop established in a greenhouse in Montecillo, 

Texcoco, State of Mexico, in 2022, brownish brown leaf spots and rotting of fruits with 

asymmetric sunken lesions were observed, which extended and acquired a brown color. 

The objective of the present work was to identify the causal agent of brown rot in fruits 

and strawberry plants.  

 

Materials and Methods. Symptomatic fruits and leaves were collected, from which 

fungal isolates were obtained to perform pathogenicity tests on plants and fruits, in plants 

by two inoculation methods: spraying via foliar and via root; in fruits by immersion. 

Concentrations of 2×106 conidia mL-1 were used.  The ITS region of the rDNA was 

amplified and sequenced by PCR with the universal primers ITS1-ITS4. 

 

Results. Pilidium concavum was morphologically and molecularly identified as the causal 

agent of brown spot and brown rot on strawberry. It was found to be pathogenic in 

strawberry fruits cv. Aromas and in plants less than two months old. It showed variation 

in virulence, in affected plants it varied from 40 to 50%, in fruits it reached 100%. 

 

Conclusion. The result determines that Pilidium concavum is a pathogen that produces 

brown leaf spot and brown rot in strawberry fruits. It allows new lines of research related 

to the impact of the disease on strawberry production, yield and quality in Mexico. This 

research is the first report of Pilidium concavum as a strawberry pathogen in the State of 

Mexico. 
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INTRODUCTION 

Strawberry (Fragaria x ananassa) is one of the most important fruits worldwide from 

an economic, commercial, and nutritional perspective (Giampieri et al., 2012; Ikegaya, 

2023). However, several pathogens affect its life cycle, including fungi, bacteria, viruses, 

and nematodes (Petrasch et al., 2019). Fungi have the greatest impact on reducing yield 

and nutritional, commercial, and economic quality. They can infect all parts of the plant, 

causing severe damage and even plant death (Garrido et al., 2011; Azam et al., 2019). 

Among the most damaging fungal and oomycete pathogens affecting strawberries are 

Botrytis cinerea, Colletotrichum sp., Sphaerotheca macularis, Phytophthora sp., 

Verticillium sp., and Diplocarpon earlianum (Reddy, 2016). Additionally, new emerging 

pathogens have gained increasing economic and scientific significance over time. 

Emerging pathogens pose a significant threat to strawberry productivity, as their 

incidence and severity can increase rapidly, resulting in substantial losses (Milgroom, 

2017; Ristaino et al., 2021). According to Pedraza Herrera et al. (2022), emerging diseases 

are caused by pathogens that have undergone changes in their incidence, geographic 

distribution, or host range, as well as alterations in their pathogenesis, evolution, or have 

been newly discovered or recognized. Among the new diseases caused by emerging 

pathogens are leaf spot and root and crown rot caused by Neopestalotiopsis sp. (Rebollar-

Alviter et al., 2020; Baggio et al., 2021), fruit rot caused by Neofusicoccum sp. (Zhan et 

al., 2021), leaf spot and anthracnose caused by Pestalotiopsis sp. (Morales-Mora et al., 

2019), and brown leaf spot and fruit rot caused by Pilidium concavum (Fernández-Ortuño 

et al., 2014). 

The presence of brown necrotic spot and rot on strawberry has been reported to date in 

only nine countries: India, Venezuela, Poland, Brazil, Belgium, China, the USA, Iran, and 

South Korea (Fernández-Ortuño et al., 2014; Park et al., 2017). The severity of the damage 

caused by this disease varies considerably, ranging from 3% to 50% infection in greenhouse 

plants, and up to 70% in stored fruit (Lopes et al., 2010; Debode et al., 2011). The pathogen 

responsible for this disease is Pilidium concavum, which has a broad host range in both 

wild and cultivated plants. Affected wild plants include Fallopia japonica, Hieracium 

caespitosum, Aesculus hippocastanum, Greyia radlkoferi, while cultivated hosts include 

Olea europaea, Fragaria×ananassa, Paeonia suffruticosa, Bergenia crassifolia, Rosa 

rugosa, Eucalyptus spp., Prunus domestica, Vaccinium corymbosum, Vitis vinifera, and 

Ilex paraguariensis (Aguin et al., 2016; Karimi et al., 2016; Lopez et al., 2020). The spread 

of emerging pathogens to new geographical areas presents additional challenges for 

governments, farmers, and scientists, as they must be prepared to confront an expanding 

range of diseases that threaten food security and economic stability. Due to the incidence 

of brown toasted rot on strawberry fruit and leaves in Montecillo, Texcoco, Mexico, this 

study was designed to identify the causal agent of brown toasted rot in strawberry fruit 

plants through pathogenicity tests, morphological characteristics, and molecular assays.  

A random sampling was conducted, and ten strawberry plants showing symptoms of 

leaf spot, flower peduncle necrosis, and fruit rot were collected. This was carried out in 

October and November of 2022 in the greenhouse at the Colegio de Postgraduados, 

Montecillo Campus, Texcoco, Mexico, located at coordinates 19°27'37"N 98°54'12"W. 

The samples were labeled, packaged in paper bags, and transported in a cooler for 

processing in the Phytosanitary-Phytopathology Laboratory at the Colegio de 
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Postgraduados, Montecillo Campus, State of Mexico. The samples were cut into 1 cm 

square tissue pieces, disinfected with 1% sodium hypochlorite for three minutes, and five 

tissue pieces from each sample were placed on potato-dextrose-agar (PDA; Bioxón®, 

Becton Dickinson de México) and in a humid chamber. Isolations were obtained from fruit 

and leaves. The reisolation of the microorganism associated with symptomatic leaflets and 

fruit from the humid chamber was done on agar-water (AA; BD Bioxón®, Becton 

Dickinson de México) following the procedure described by the National Service of Health, 

Safety, and Agro-food Quality (SENASICA, 2018). The cultures were incubated under 

natural white light at a laboratory temperature of 25±2 °C for 72 hours until mycelial 

growth was observed. To purify the isolation, a hyphal tip was transferred to PDA. 

Monosporic isolations were obtained through serial dilutions, which were plated on AA at 

1.6% and incubated for 18 hours; then, a germinated conidium was transferred to PDA 

medium, and the cultures were incubated at 25±2 °C. The isolates were stored at 15°C in 

test tubes with slanted PDA, supplemented with sterile mineral oil (Montesinos et al., 

2015). Morphological identification was carried out using taxonomic keys reported by 

Barnett and Hunter (2006) and species-specific keys by Palm (1991) and Rossman et al. 

(2004). Semi-permanent preparations with 50% glycerol on glass slides were made to 

observe them under a BX51 compound microscope (Olympus, Japan). Mycelial coloration 

and conidial morphology and morphometry were determined by examining 100 conidia per 

isolate at 14 days after plating.  

For the pathogenicity tests, inoculations were performed on mature strawberry fruits 

that were uniform in size and color, as well as on strawberry seedlings of the Aromas 

variety. Pathogenicity was assessed on both wounded and non-wounded fruits, which were 

previously disinfected. Wounds were made using a sterile needle to a depth of 1 cm in each 

fruit. Five fruits were used per treatment. Inoculation was carried out by immersing the 

fruits for 3 minutes in a conidial suspension of 2×106 conidia mL−1, adjusted using a 

hemocytometer. Control fruits were immersed in sterile distilled water for 3 minutes. The 

fruits were placed in a plastic dome with sterile wet towels as humid chambers and 

incubated at 25±2 °C under natural white light. Incidence was evaluated as the percentage 

of fruits affected by the pathogen, and severity was evaluated as the percentage of tissue 

affected. 

For the plant tests, seedlings aged 1-2 months, 3-4 months, and older than 4 months 

were used. They were inoculated by spraying with spore suspensions of 2×106 conidia 

mL−1, both foliar and root inoculations. Ten plants were assigned per treatment. Control 

plants were sprayed with sterile distilled water. The plants were incubated in a growth 

chamber with a 12-hour light and 12-hour dark photoperiod, at 80% relative humidity, for 

seven days. Incidence and severity were evaluated every 24 hours up to 20 days after 

inoculation. Incidence was assessed as the percentage of leaflets affected by the pathogen, 

and severity was measured using a visual scale with seven severity classes (Figure 1). 

Asymptomatic plant leaflets were disinfected and incubated in a humid chamber for five 

days, after which incidence was evaluated. The pathogenicity tests were performed in 

triplicate. Incidence and severity data were adjusted to a normal distribution, and the Tukey 

test was applied for mean comparison (P ≤ 0.05). 
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Figure  1. Visual scale for evaluating the severity of brown toasted leaf spot on strawberry. Designed by the 

authors. 

 

For molecular identification, mycelium and conidia were collected to extract genomic 

DNA, following the method of Ahrens and Seemüller (1992). The ribosomal gene (rDNA) 

regions of the internal transcribed spacers ITS1 and ITS2 were then amplified by PCR 

using the universal primers ITS5 and ITS4 (Martin and Rygiewicz, 2005), using the Sanger 

method at Macrogen (Korea). The obtained sequences were purified and aligned with 

sequences deposited in the Gene Bank of the National Center for Biotechnology 

Information (NCBI) based on BLAST searches and literature. Sequences with 100% 

similarity were aligned in MEGA11 software, version 11.0.13 (Tamura et al., 2021), using 

the Clustal algorithm, and compared with sequences in GenBank at NCBI, supported by 

the BLAST tool. The most similar sequences were extracted for phylogenetic analysis, 

constructing a neighbor-joining tree using the Bootstrap method and the Tajima-Nei model. 

Chaetomella raphigera (accession number MH860747) was used as the outgroup, and the 

sequences of the isolates were deposited in the NCBI Gene Bank. Symptoms observed on 

the fruits of strawberry cv. Aromas include asymmetric, sunken, wet lesions that are pink 

in color, without a chlorotic halo on the epicarp. The lesions expand, turning brown with 

masses of white conidia that turn pink-red and eventually brown on the lesion surface 

(Figure 2A-B). On the leaves, lesions begin at the margin or apex as brown, asymmetric 

spots, progressing toward the leaf base, characteristic of "toasted" leaves (Figure 2D-E).  
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The isolate on PDA medium formed colonies with circular shapes, ranging from regular 

to irregular, and the presence of white mycelium was minimal to absent (mass-like form) 

with regular edges. The base color of the colony grew from cinnamon to brown. After 12 

days of incubation on PDA medium, the colony edges developed a light to dark brown 

pigmentation. After 14 days of incubation, sporodochia were observed, forming in 

concentric circles with a gelatinous appearance, a black base, and disc-shaped to 

hemispherical structures, ranging from light brown to dark brown, suborbicular, measuring 

354 to 658 µm in length and 370 to 688 µm in width. The conidiophores were hyaline, 

unicellular, cylindrical, and filiform, measuring 17.64 to 48.04 µm in length and 0.83 to 

2.49 µm in width. Conidia were hyaline, aseptate, fusiform, canoe-shaped to allantoid, 

measuring 5.84 to 10.95 µm in length and 1.29 to 3.63 µm in width. (Figure 3). No sexual 

stage was observed. These characteristics correspond to those described by Palm (1991) 

and Rossman (2004) for Pilidium, reported as a facultative parasite with symptoms similar 

to those described by Debode et al. (2011) and Fernández-Ortuño et al. (2014).  

The sequence alignment in the GenBank database (NCBI) showed 100% similarity with 

Pilidium concavum and P. lythri. In the phylogenetic tree (Figure 4), the isolate grouped 

with the reference isolates of P. concavum and P. lythri. Additionally, it was confirmed 

that P. concavum is more closely related to P. pseudoconcavum, with a support value of 

94%. The isolates were registered in the GenBank database with accession numbers 

OR568456 and OR568457. The presence of P. concavum as a pathogen of leaves and fruits 

has been reported in several countries, including India (Phatak and Payak, 1965), 

Venezuela (Cedeño et al., 2001), Poland (Gołębniak and Jarosz, 2003), Brazil (Lopes et 

al., 2010), Belgium (Debode et al., 2011), China (Geng et al., 2012), the USA (Fernández-

Ortuño et al., 2014), Iran (Ayoubi et al., 2016), and Korea (Park et al., 2017). However, no 

reports of damage caused by this pathogen had been made in Mexico. 

 

Figure 2. A) Fruit with sunken, wet lesions. B) Fruit with brown rot and fungal structures. C) Brown constriction 

on the flower peduncle. D-E) Leaves with toasted brown edges. F) Healthy leaves. 
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Figure 4. Phylogenetic tree based on Neighbor Joining of the ITS rDNA sequence, showing a phylogenetic affinity 

of the Mexico isolate (in bold) with Pilidium concavum above 95% of the node. Bar scaling 0.02 represents 

nucleotide substitutions per site. 

Figure 3. A) Sporodochia on strawberry fruit. B) Sporodochia on the underside of the leaf. C-D) Gelatinous colony with 

conidial mass on PDA medium. E-F) Longitudinal and transverse sections of the sporodochium. G) Hyaline, cylindrical, 

filiform conidiophores. H) Hyaline, aseptate, allantoid conidia. 
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The taxonomy of this fungus is not well defined and has undergone reclassifications 

based on recent morphological characteristics and phylogenetic analyses. The genus 

Pilidium of the family Chaetomellaceae, class Leotiomycetes, was first described as P. 

acerinum (Alb. and Schwein) (Rossman et al., 2004). Currently, the recognized species in 

the genus are P. acerinum, P. lythri (also known as P. concavum), P. pseudoconcavum, P. 

eucalyptorum, and P. septatum (Rossman et al., 2004; Kirk et al., 2011; Crous et al., 2013; 

2015). According to Palm (1991) and Rossman et al. (2004), P. concavum was shown to 

be related to the anamorph Hainesia lythri, Dacryomyces lythri (teleomorph Discohainesia 

oenotherae), Peziza oenotherae, Pezizella oenotherae, and Sclerotiopsis testudinacea as 

morphotypes of the same species, and thus are considered synonyms. However, Pilidium 

is the oldest generic name used and includes several phytopathogenic species. Recently, 

Rossman (2014) transferred P. concavum as a synonym of P. lythri, so referring to either 

name is now considered valid for the same species (Johnston et al., 2014). 

 In the pathogenicity tests, three days after inoculation, sunken lesions were observed 

on wounded fruits, ranging in color from opaque pink to brown, with initial white conidial 

masses that turned pink and eventually brown (Figure 5A). The incidence and severity were 

both 100%. On non-wounded fruits, symptoms with fungal structures appeared on the fifth 

day after inoculation, with incidence and severity also at 100% (Figure 5D). The structures 

and spores on the symptomatic fruits were morphologically identical to the colonies 

originally used for inoculum production. The control fruits showed no symptoms of the 

disease. These tests confirmed that the causal agent of brown rot in strawberry fruit is P. 

concavum, as reported in similar studies by Debode et al. (2011) and Karimi et al. (2016) 

on strawberry fruit. 

 

Figure 5. Pathogenicity tests on strawberry fruit inoculated with a concentration of 2×106 conidia mL−1 of Pilidium concavum. 

A) Fruit with a wound inoculated with the fungus. B) Wounded fruit showing symptoms 72 hours post-inoculation (hpi). C) 

Sporodochia of the fungus on the wounded fruit. D) Unwounded fruit inoculated with the fungus. E) Unwounded fruit showing 

symptoms 96 hours post-inoculation. F) Sporodochia of the fungus on the unwounded fruit. G) Control inoculated with sterile 

distilled water, showing no symptoms at 96 hours post-inoculation. 
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The inoculated seedlings, approximately 1 to 2 months old, showed mild symptoms on 

new shoots and leaves (Figure 6) 20 days after inoculation. Inoculation on leaves showed 

50% incidence with 20% severity. Most symptoms were observed on new shoots (new 

leaves) and senescent mature leaves. In contrast, in the plants inoculated via the roots, the 

incidence was 40%, and symptoms appeared on senescent leaves and new leaves with 10% 

severity. Asymptomatic leaflets, after 5 days in a humid chamber, showed orange to brown 

sporodochia on the leaves (Figure 7). Fungal structures were observed in 90% of the leaf-

inoculated treatment and 80% of the root-inoculated treatment. No structures were 

observed on stems or roots, only on leaves. The microorganism was reisolated, and its 

identity was confirmed through morphological identification. It is inferred that the fungus 

is a potential pathogen for nursery seedlings. This aligns with reports by Debode et al. 

(2011) and Fernández-Ortuño et al. (2014), who reported infections in nurseries and 

transplant batches. The infection was systemic. Plants inoculated through the roots showed 

structures on the leaves when exposed to a humid chamber, results similar to those obtained 

by Lopez et al. (2020), who inoculated Ilex paraguariensis plants via roots and observed 

damage on the leaves. In this study, plants at the fruiting stage showed fruit rot symptoms 

6 months after inoculation, suggesting that the inoculum remained latent in the plants and 

caused damage when conditions became favorable. According to Hipol et al. (2014), P. 

concavum is part of the endophytic fungi group, as it belongs to the Leotiomycetes class of 

the Pezizomycotina subphylum, which includes common endomycorrhizal endophytic 

fungi. Therefore, it may have the ability to be endophytic in strawberry plants. Inoculation 

of 3-month-old and older-than-4-month-old strawberry plants did not induce brown rot 

symptoms on the leaves. However, when these plants developed and fruited 6 months after 

inoculation, the fruits and flower buds showed symptoms with fungal structures of P. 

concavum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Strawberry plants (Fragaria x ananassa) cv. Aromas less than three months old, 15 days post-inoculation (dpi) with 

a suspension of 2x106 conidia per mL of Pilidium concavum. A) Inoculated via foliar; B) Inoculated via root routes; C) Control 

inoculated with sterile distilled water. 
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P. concavum is a fungus with a wide host range. Its importance lies in its ability to affect 

economically valuable crops, especially olive fruit (Arzanlou et al., 2013), Ilex 

paraguariensis (López et al., 2020), grape clusters (Aguin et al., 2016), and strawberry 

(Debode et al., 2011). Thus, the evolution of this pathogen, its geographical distribution, 

host range, and its interaction with plants have increasing relevance in the context of global 

climate change. This phenomenon affects plant communities in all aspects, from growth 

and reproduction to resistance and susceptibility (Zhao et al., 2017; Tito et al., 2018). 

Additionally, climate change alters the population and behavior of microorganisms, 

modifying their interactions with hosts (Cohen and Leach, 2020). This may lead to the 

adoption of new invasion strategies through changes in the virulence system, which could, 

in turn, compromise plant resistance (Cheng et al., 2019). As a result, plant-microorganism 

interactions may shift from a mutualistic to a pathogenic association, or vice versa 

(González et al., 2021). This study reports Pilidium concavum as the species responsible 

for brown toasted rot in strawberry fruits and leaves in Montecillo, Texcoco, State of 

Mexico. Morphological characteristics, pathogenicity tests, molecular characterization, and 

a literature review showed no genetic diversity between the isolates from leaflets and fruits, 

although further studies are needed, along with monitoring regions where strawberries are 

cultivated. Symptoms were more frequently associated with fruits, which contributed to the 

difficulties in replicating symptoms in leaves. Additional research is needed to clarify the 

origin of the new pathogen, its disease cycle, and to develop integrated management 

strategies for the disease in nurseries and postharvest. 
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Figure 7. A) Asymptomatic strawberry leaves after 28 days post-inoculation (dpi), placed in a humid chamber. B) 

Formation of sporodochia on the leaves after 5 days in the humid chamber. 
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